
AllFusion Endevor®
Change Manager

SCL Reference Guide
4.0

SP1
ENSCL400

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition June 2003

 2003 Computer Associates International, Inc. (CA)
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1. What Is SCL? . 1-1
1.1 Type Sequence Processing . 1-4

1.1.1 Overview . 1-4
1.2 Process Flow . 1-6

1.2.1 Overview . 1-6
1.2.2 Example . 1-8

1.3 Documentation Overview . 1-10
1.4 Name Masking . 1-11

1.4.1 Usage . 1-11
1.4.2 Masking Improvements . 1-12

1.5 Syntax Conventions . 1-13
1.5.1 Sample Syntax Diagram . 1-15
1.5.2 Syntax Diagram Explanation . 1-16
1.5.3 General Coding Information . 1-18

1.5.3.1 Valid Characters . 1-18
1.5.3.2 Incompatible Commands and Clauses 1-19
1.5.3.3 Ending A Statement . 1-19
1.5.3.4 &&ACTION Statement . 1-19
1.5.3.5 SCL Parsing Information . 1-20
1.5.3.6 SCL Continuation Syntax Rules 1-20

1.6 Syntax for Long File and Path Names . 1-21
1.6.1 HFSFile Syntax Rules . 1-21
1.6.2 Path Name Syntax Rules . 1-22
1.6.3 Element Name Syntax Rules . 1-22

Chapter 2. About the SCL Language . 2-1
2.1 SCL Statements . 2-2

2.1.1 Set Statements . 2-2
2.1.2 Clear Statements . 2-3
2.1.3 EOF (EOJ) Statement . 2-3
2.1.4 Element Action Statements . 2-3
2.1.5 Environment Definition Statements . 2-4
2.1.6 Package Action Statements . 2-4

2.2 Statements and Clauses . 2-6
2.2.1 Overview . 2-6
2.2.2 Coding Order . 2-6

2.3 Element Action Examples . 2-7
2.3.1 Example 1 . 2-7
2.3.2 Example 2 . 2-8

Contents iii

2.3.3 Example 3 . 2-8
2.3.4 Example 4 . 2-9

Chapter 3. Set, Clear, and EOF Statements 3-1
3.1 Set Statements . 3-2

3.1.1 Conventions . 3-2
3.1.2 Set Action . 3-3
3.1.3 Syntax . 3-3

3.1.3.1 Syntax Rules . 3-3
3.1.4 Set Build . 3-4
3.1.5 Syntax . 3-4

3.1.5.1 Syntax Rules . 3-5
3.1.6 Set From . 3-7
3.1.7 Syntax . 3-7

3.1.7.1 Syntax Rules . 3-8
3.1.8 Set Options . 3-9
3.1.9 Syntax . 3-9

3.1.9.1 Syntax Rules . 3-10
3.1.9.2 Actions and the Set Options Statement 3-12

3.1.10 Set STOPRC . 3-15
3.1.11 Syntax . 3-15

3.1.11.1 Syntax Rules . 3-15
3.1.12 Set To . 3-15
3.1.13 Syntax . 3-16

3.1.13.1 Syntax Rules . 3-16
3.1.14 Set Where . 3-18
3.1.15 Syntax . 3-19

3.1.15.1 Syntax Rules . 3-20
3.2 Clear Statements . 3-25

3.2.1 Overview . 3-25
3.2.2 Clear Build . 3-25
3.2.3 Syntax . 3-25

3.2.3.1 Syntax Rules . 3-25
3.2.4 Clear To/From . 3-26
3.2.5 Syntax . 3-26

3.2.5.1 Syntax Rules . 3-26
3.2.6 Clear Options . 3-27
3.2.7 Syntax . 3-27

3.2.7.1 Syntax Rules . 3-28
3.2.8 Clear Where . 3-28
3.2.9 Syntax . 3-28

3.2.9.1 Syntax Rules . 3-28
3.3 EOF (EOJ) Statement . 3-30

3.3.1 Overview . 3-30
3.3.2 Syntax . 3-30

3.3.2.1 Syntax Rules . 3-30

Chapter 4. Element Action Statements . 4-1
4.1 Coding Conventions . 4-2
4.2 SCL Execution JCL . 4-3

4.2.1 Overview . 4-3

iv SCL Reference Guide

4.3 The &&ACTION Statement . 4-4
4.3.1 Overview . 4-4
4.3.2 Syntax . 4-4

4.3.2.1 Syntax Rules . 4-5
4.3.3 Example of &&ACTION SCL . 4-6

4.4 The Add Statement . 4-7
4.4.1 Overview . 4-7
4.4.2 Add Syntax . 4-7

4.4.2.1 Syntax Rules . 4-7
4.4.3 Example of Add SCL . 4-11

4.5 The Archive Statement . 4-12
4.5.1 Overview . 4-12
4.5.2 Syntax . 4-12

4.5.2.1 Syntax Rules . 4-13
4.5.3 Example of Archive SCL . 4-17

4.6 The Copy Statement . 4-18
4.6.1 Overview . 4-18
4.6.2 Syntax . 4-18

4.6.2.1 Syntax Rules . 4-19
4.6.3 Example of Copy Action SCL . 4-23

4.7 The Delete Statement . 4-24
4.7.1 Overview . 4-24
4.7.2 Syntax . 4-24

4.7.2.1 Syntax Rules . 4-25
4.7.3 Example of Delete Action SCL . 4-27

4.8 The Generate Statement . 4-28
4.8.1 Overview . 4-28
4.8.2 Syntax . 4-28

4.8.2.1 Syntax Rules . 4-28
4.8.3 Example of Generate SCL . 4-32

4.9 The List Statement . 4-33
4.9.1 Overview . 4-33
4.9.2 List from Endevor Statement . 4-33
4.9.3 Syntax . 4-33

4.9.3.1 Syntax Rules . 4-35
4.9.4 List from Archive Data Set . 4-43
4.9.5 Syntax . 4-43

4.9.5.1 Syntax Rules . 4-44
4.9.6 List Members (List from External Library) 4-49
4.9.7 Syntax . 4-49

4.9.7.1 Syntax Rules . 4-49
4.9.8 Example of List SCL . 4-52

4.10 The Move Statement . 4-54
4.10.1 Overview . 4-54
4.10.2 Syntax . 4-54

4.10.2.1 Syntax Rules . 4-55
4.10.3 Example of Move SCL . 4-60

4.11 The Print Statement . 4-61
4.11.1 Overview . 4-61
4.11.2 Printing from Endevor . 4-61

Contents v

4.11.3 Printing from an Output Library . 4-61
4.11.4 Print Element Statement . 4-62
4.11.5 Syntax . 4-62

4.11.5.1 Syntax Rules . 4-63
4.11.6 Print Member Statement . 4-67
4.11.7 Syntax . 4-67

4.11.7.1 Syntax Rules . 4-67
4.11.8 Example of Print SCL . 4-68

4.12 The Restore Statement . 4-69
4.12.1 Overview . 4-69
4.12.2 Syntax . 4-69

4.12.2.1 Syntax Rules . 4-70
4.12.3 Example of Restore SCL . 4-74

4.13 The Retrieve Statement . 4-75
4.13.1 Overview . 4-75
4.13.2 Syntax . 4-75

4.13.2.1 Syntax Rules . 4-76
4.13.3 Example of Retrieve SCL . 4-81

4.14 The Signin Statement . 4-82
4.14.1 Overview . 4-82
4.14.2 Syntax . 4-82

4.14.2.1 Syntax Rules . 4-82
4.14.3 Example of Signin SCL . 4-85

4.15 The Transfer Statement . 4-86
4.15.1 Overview . 4-86
4.15.2 Transfer from Endevor to Endevor Statement 4-86
4.15.3 Syntax . 4-86

4.15.3.1 Syntax Rules . 4-87
4.15.4 Transfer from Endevor to Archive Data Set Statement 4-95
4.15.5 Syntax . 4-95

4.15.5.1 Syntax Rules . 4-96
4.15.6 Transfer from Archive Data Set or Unload Tape to Endevor

Statement . 4-102
4.15.7 Syntax . 4-102

4.15.7.1 Syntax Rules . 4-104
4.15.8 Example of Transfer SCL . 4-111

4.16 The Update Statement . 4-112
4.16.1 Overview . 4-112
4.16.2 Syntax . 4-112

4.16.2.1 Syntax Rules . 4-112
4.16.3 Example of Update SCL . 4-115

Chapter 5. Batch Package SCL . 5-1
5.1 Batch Package Facility . 5-2

5.1.1 Summary of Batch Package Actions . 5-2
5.1.2 Batch Package Actions and Wildcarding 5-4

5.2 Batch Package Facility Execution . 5-5
5.2.1 Overview . 5-5
5.2.2 Execution JCL . 5-5
5.2.3 Validating Input SCL . 5-7
5.2.4 Return Codes . 5-7

vi SCL Reference Guide

5.3 Approve Package . 5-8
5.3.1 Overview . 5-8
5.3.2 Syntax . 5-8

5.3.2.1 Syntax Rules . 5-8
5.3.3 Example of Approve Package SCL . 5-8

5.4 Archive Package . 5-9
5.4.1 Overview . 5-9
5.4.2 Syntax . 5-9

5.4.2.1 Syntax Rules . 5-9
5.4.3 Example of Archive Package SCL . 5-10

5.5 Backin Package . 5-12
5.5.1 Overview . 5-12
5.5.2 Syntax . 5-12

5.5.2.1 Syntax Rules . 5-12
5.5.3 Example of Backin Package SCL . 5-12

5.6 Backout Package . 5-13
5.6.1 Overview . 5-13
5.6.2 Syntax . 5-13

5.6.2.1 Syntax Rules . 5-13
5.6.3 Example of Backout Package SCL 5-13

5.7 Cast Package . 5-14
5.7.1 Overview . 5-14
5.7.2 Syntax . 5-14

5.7.2.1 Syntax Rules . 5-14
5.7.3 Example of Cast Package SCL . 5-15

5.8 Commit Package . 5-16
5.8.1 Overview . 5-16
5.8.2 Syntax . 5-16

5.8.2.1 Syntax Rules . 5-16
5.8.3 Example of Commit Package SCL 5-17

5.9 Define Package . 5-18
5.9.1 Overview . 5-18
5.9.2 Syntax . 5-18

5.9.2.1 Syntax Rules . 5-19
5.9.3 Example of Define Package SCL . 5-21

5.10 Delete Package . 5-22
5.10.1 Overview . 5-22
5.10.2 Syntax . 5-22

5.10.2.1 Syntax Rules . 5-22
5.10.3 Example of Delete Package SCL . 5-23

5.11 Deny Package . 5-24
5.11.1 Overview . 5-24
5.11.2 Syntax . 5-24

5.11.2.1 Syntax Rules . 5-24
5.11.3 Example of Deny Package SCL . 5-24

5.12 Execute Package . 5-25
5.12.1 Overview . 5-25
5.12.2 Syntax . 5-25

5.12.2.1 Syntax Rules . 5-25
5.12.3 Example of Execute Package SCL 5-26

Contents vii

5.13 Export Package . 5-27
5.13.1 Overview . 5-27
5.13.2 Syntax . 5-27

5.13.2.1 Syntax Rules . 5-27
5.13.3 Example of Export Package SCL . 5-28

5.14 Inspect Package . 5-29
5.14.1 Overview . 5-29
5.14.2 Syntax . 5-29

5.14.2.1 Syntax Rules . 5-29
5.15 Reset Package . 5-30

5.15.1 Overview . 5-30
5.15.2 Syntax . 5-30

5.15.2.1 Syntax Rules . 5-30
5.15.3 Example of Reset Package SCL . 5-30

5.16 Submit Package . 5-31
5.16.1 Overview . 5-31
5.16.2 Syntax . 5-31

5.16.2.1 Syntax Rules . 5-31
5.16.3 Example of Submit Package SCL 5-34

Chapter 6. Environment Definition SCL . 6-1
6.1 Batch Environment Administration Facility 6-2
6.2 Batch Environment Administration Facility Execution 6-3

6.2.1 Overview . 6-3
6.2.2 Execution JCL . 6-3
6.2.3 DD Statement Descriptions . 6-4
6.2.4 Validating Input SCL . 6-4
6.2.5 Return Codes . 6-5
6.2.6 Execution Reports . 6-6

6.3 Edit Commands . 6-10
6.3.1 Overview . 6-10
6.3.2 Invoking Edit Commands . 6-10
6.3.3 Edit Command Rules . 6-12

6.4 The Build Statements . 6-13
6.4.1 Overview . 6-13
6.4.2 Build SCL for Approver Group . 6-14
6.4.3 Syntax . 6-14

6.4.3.1 Syntax Rules . 6-14
6.4.4 Build SCL for Approver Relation . 6-16
6.4.5 Syntax . 6-16

6.4.5.1 Syntax Rules . 6-16
6.4.6 Build SCL for Environment . 6-18
6.4.7 Syntax . 6-18

6.4.7.1 Syntax Rules . 6-18
6.4.8 Build SCL for Processor Group . 6-20
6.4.9 Syntax . 6-20

6.4.9.1 Syntax Rules . 6-20
6.4.10 Build SCL for Processor Symbol 6-22
6.4.11 Syntax . 6-22

6.4.11.1 Syntax Rules . 6-22
6.4.12 Build SCL for Shipment Destination 6-24

viii SCL Reference Guide

6.4.13 Syntax . 6-24
6.4.13.1 Syntax Rules . 6-24

6.4.14 Build SCL for Subsystem . 6-26
6.4.15 Syntax . 6-26

6.4.15.1 Syntax Rules . 6-26
6.4.16 Build SCL for System . 6-28
6.4.17 Syntax . 6-28

6.4.17.1 Syntax Rules . 6-28
6.4.18 Build SCL for Type . 6-30
6.4.19 Syntax . 6-30

6.4.19.1 Syntax Rules . 6-30
6.4.20 Build SCL for Type Sequence . 6-32
6.4.21 Syntax . 6-32

6.4.21.1 Syntax Rules . 6-32
6.5 The Define Statements . 6-34

6.5.1 Overview . 6-34
6.5.2 Define Approver Group . 6-35
6.5.3 Syntax . 6-35

6.5.3.1 Syntax Rules . 6-35
6.5.4 Define Approver Relation . 6-37
6.5.5 Syntax . 6-37

6.5.5.1 Syntax Rules . 6-37
6.5.6 Define Processor Group . 6-39
6.5.7 Syntax . 6-39

6.5.7.1 Syntax Rules . 6-39
6.5.8 Define Processor Symbol . 6-42
6.5.9 Syntax . 6-42

6.5.9.1 Syntax Rules . 6-42
6.5.10 Define Shipment Destination . 6-44
6.5.11 Syntax . 6-44

6.5.11.1 Syntax Rules . 6-44
6.5.12 Define Shipment Mapping Rule . 6-49
6.5.13 Syntax . 6-49

6.5.13.1 Syntax Rules . 6-49
6.5.14 Define Subsystem . 6-51
6.5.15 Syntax . 6-51

6.5.15.1 Syntax Rules . 6-51
6.5.16 Define System . 6-53
6.5.17 Syntax . 6-53

6.5.17.1 Syntax Rules . 6-53
6.5.18 Define Type . 6-57
6.5.19 Syntax . 6-57
6.5.20 Define Type Syntax . 6-57

6.5.20.1 Syntax Rules . 6-59
6.5.21 Define Type Sequence . 6-70
6.5.22 Syntax . 6-70

6.5.22.1 Syntax Rules . 6-70
6.6 The Delete Statements . 6-73

6.6.1 Overview . 6-73
6.6.2 Delete Approver Group . 6-74

Contents ix

6.6.3 Syntax . 6-74
6.6.3.1 Syntax Rules . 6-74

6.6.4 Delete Approver Relation . 6-76
6.6.5 Syntax . 6-76

6.6.5.1 Syntax Rules . 6-76
6.6.6 Delete Processor Group . 6-78
6.6.7 Syntax . 6-78

6.6.7.1 Syntax Rules . 6-78
6.6.8 Delete Processor Symbol . 6-79
6.6.9 Syntax . 6-79

6.6.9.1 Syntax Rules . 6-79
6.6.10 Delete Shipment Destination . 6-81
6.6.11 Syntax . 6-81

6.6.11.1 Syntax Rules . 6-81
6.6.12 Delete Shipment Mapping Rule . 6-82
6.6.13 Syntax . 6-82

6.6.13.1 Syntax Rules . 6-82
6.6.14 Delete Subsystem . 6-83
6.6.15 Syntax . 6-83

6.6.15.1 Syntax Rules . 6-83
6.6.16 Delete System . 6-84
6.6.17 Syntax . 6-84

6.6.17.1 Syntax Rules . 6-84
6.6.18 Delete Type . 6-85
6.6.19 Syntax . 6-85

6.6.19.1 Syntax Rules . 6-85

Appendix A. SCL Reserved Words . A-1
A.1 A Rule for Working with Reserved Words A-2
A.2 The SCL Reserved Words . A-3

x SCL Reference Guide

Chapter 1. What Is SCL?

SCL—Software Control Language—is a freeform language, with English-like
statements, that allow you to manipulate elements, environment definitions, and
packages within Endevor. SCL is the language used for the non-interactive (batch)
execution of Endevor. It is a flexible and powerful tool, saving you time in two ways:

■ Using SCL allows you to work with as many (or as few) actions as are required to
complete a specific job at a particular time.

■ Using SCL eliminates much of the screen navigation that is required to process
large numbers of elements in an interactive mode.

Because of its consistent nature, SCL is easy to learn and use. For example, you can
establish global settings that can be used over and over. This provides a concise and
consistent set of options or location information which can be applied to any number
of actions, and you need code this information only once in each job stream.
Conversely, you can override any pre- established settings by entering like information
in a particular request.

There are many features and benefits to using SCL. The following list emphasizes
those aspects of SCL that both facilitate and enhance Endevor processing.

■ SCL allows you to set up a single list or multiple lists of element actions for
further manipulation in Endevor.

■ SCL allows you to manipulate elements or members singly, on a
module-by-module level. SCL also allows you to manipulate several library
members or module elements at a time. You can tailor your coding to meet your
requirements at any time.

■ SCL is extremely flexible. You can establish global settings for element action
requests (using a SET statement), and override one or all of your selections on a
local level; that is, within each individual element action request. In addition:

– You can define the files you want to manipulate either within the language
(for example, using a clause such as SET DSNAME...) or external to the
language (for example, using a clause such as SET FILE...).

– You can delay the specification of actions to be run at a particular time, by
using the &&ACTION facility (see the description of &&ACTION in Chapter
4, "Element Action Statements"). This capability allows you to define a list
of actions for future use and re-use, so you can code only what you need
when you need it.

Chapter 1. What Is SCL? 1-1

■ SCL allows you to mix Endevor locations within the same execution. You can
change environment, system, subsystem, or type at any time.

■ SCL supports processing in type-sequence order, automatically sorting elements
according to the specifications determined by the Endevor administrator in your
organization.

■ SCL supports list processing. List processing enables you to:

– Generate a list, edit it as necessary, and break it up into multiple executions
instead of keying individual statements.

– Generate lists based on different selection criteria.

– Perform configuration management through the use of a special WHERE
COMPONENTS EQUAL option.

– Support a single scan facility that will run against CA-PANVALET,
CA-LIBRARIAN, a PDS, and Endevor, so you do not need to use separate
utilities to scan source code.

■ SCL serves as a problem-solving tool, by allowing you to quickly isolate system
errors. For example, you can use the WHERE GENERATE FAILED option to
generate a list of only those elements that were not successfully processed at a
specific time.

■ SCL supports vendor interfaces. You can execute SCL from a user-written
program, which allows you to write user-defined front-ends for use with various
proprietary or vendor-supplied programs.

■ SCL enables you to integrate Endevor into existing change management/change
administration job scheduling systems.

■ SCL supports release scheduling (job management). For example, moving a group
of elements from a test environment to a production environment any given day.

Note: Throughout this book any references to:

■ AllFusion: Endevor Change Manager

 ■ eTrust: CA-ACF2

■ eTrust: CA-Top Secret

 ■ AllFusion: CA-Librarian

 ■ AllFusion: CA-Panvalet

 ■ Unicenter: CA-7

will simply be referred to as:

 ■ Endevor

 ■ CA-ACF2

 ■ CA-Top Secret

 ■ CA-Librarian

1-2 SCL Reference Guide

 ■ CA-Panvalet

 ■ CA-7

Chapter 1. What Is SCL? 1-3

1.1 Type Sequence Processing

1.1 Type Sequence Processing

 1.1.1 Overview

Element action SCL statements are processed in type sequence order. The type
specified in the FROM or TO clause determines the sequence in which element action
requests are processed.

An element's type is indicated in the FROM clause or TO clause (or both). The exact
type entry used to determine the processing sequence (that is, type as defined in the
FROM clause or the TO clause) depends upon the element action requested.

Actions are put into the appropriate sequence and executed within each system. In the
example below, actions have been requested for two systems: System A and System B.
Assume that the system administrator has established the following type processing
sequences:

■ For System A: COPYBOOK, then COBOL

■ For System B: MACRO, then ASSEMBLER

Action Determines Type Sequence from the . . .

Add TO clause

Archive TO clause

Copy FROM clause

Delete FROM clause

Generate FROM clause

List FROM clause

Move FROM clause

Print FROM clause

Restore TO clause

Retrieve FROM clause

Signin FROM clause

Transfer TO clause

Update TO clause

1-4 SCL Reference Guide

1.1 Type Sequence Processing

Given the element type definitions shown for each action, processing would occur in
the following sequence.

1. SYSTEM A: ADD ELEMENTS...TYPE COPYBOOK

2. SYSTEM A: GENERATE ELEMENTS...TYPE COPYBOOK...

3. SYSTEM A: ADD ELEMENTS...TYPE COBOL...

4. SYSTEM B: RETRIEVE ELEMENTS...TYPE MACRO

5. SYSTEM B: ADD ELEMENTS...TYPE ASSEM...

Note: The element type must have been previously defined by your Endevor adminis
trator, and placed in the appropriate sequence using the Type Processing Sequence
panel. For details, refer to the discussion about defining type sequence processing in
the Administration Guide.

Chapter 1. What Is SCL? 1-5

1.2 Process Flow

 1.2 Process Flow

 1.2.1 Overview

When you submit your SCL requests, Endevor follows a specific processing flow to
execute the actions.

1. Endevor first parses, or validates, the SCL syntax, assigning a statement number to
each SCL statement coded.

A Syntax Report is produced, echoing the SCL statements entered and flagging
any syntax errors.

2. When all requests have been validated, Endevor checks for errors. If errors exist
within the syntax, processing is terminated.

If no errors exist, processing continues.

3. Endevor checks whether any statements have been entered with an archive file
designated as the FROM location. All such actions are performed first, as they
are encountered.

For example, assume you code both an ARCHIVE action and a RESTORE action.
If you want Endevor to perform the RESTORE action before the ARCHIVE
action, designate an archive file as the RESTORE action's FROM location. If you
want to perform the ARCHIVE action before the RESTORE action, however, you
need to execute SCL twice—first to perform the ARCHIVE action and then to
perform the RESTORE action.

For elements that are restored, transferred, copied, or listed from an archive file,
processing occurs as follows:

■ The element(s) is restored (or transferred, copied, or listed), but it is not
generated at this time.

■ Endevor continues processing the remaining actions, as described in the
following steps (beginning with Step 4, below).

4. Endevor expands any name mask that may have been entered for system,
subsystem, stage, and type.

■ Beginning with the first SCL syntax request, Endevor checks for use of the
name mask with the system name.

If a name mask has not been used with the system name in the first SCL
syntax request, Endevor checks for the name mask in the next syntax request.
If no name mask is found and the system name is the same, Endevor checks
the system name of the third syntax request. This procedure continues until a
system name is found with a name mask or a new system name is
encountered, or until all syntax requests have been searched.

When one of the three situations mentioned above occurs, Endevor returns to
the first syntax request and checks for a name mask with the type name.

1-6 SCL Reference Guide

1.2 Process Flow

Again, if no name mask is found, the second syntax request is checked, and
so on until a type name is found with a name mask or a new type name is
encountered, or until all syntax requests have been checked. This procedure
is repeated for stage and subsystem.

Endevor examines each clause (SYSTEM and STAGE) in the syntax request
until a non-match is found. Once a difference is encountered, Endevor
executes the previous syntax requests—in type sequence order (see Step 5).
Processing then continues accordingly with the next syntax request.

■ If a name mask has been used with the system name in the first syntax
request, Endevor expands the entries. Then, within each system of the first
syntax request, any remaining name masks are expanded (in the appropriate
order).

5. Endevor sorts the types based on type sequence order.

Processing involves syntax requests for stage within a particular system. Type
processing sequence conventions still apply, however. If a name mask is not used
with type, the syntax requests themselves are sorted in type sequence order.

If a name mask is used with type, actions across all syntax requests are executed
in type sequence order. So, depending on the elements indicated (see Step 6
below), it is not unusual to see an ADD from syntax #2, followed by a
GENERATE from syntax #3, followed by an ADD from syntax #2. When all
information has been generated for the first (set of matching) syntax request(s),
Endevor executes the next (set of) syntax request(s).

6. Once all types have been defined, Endevor checks the stage identifier involved
within the first type. If a name mask has been used with the stage identifier,
Endevor expands the entries.

Still within the first type, and within the first stage identified, Endevor expands
any subsystem name masks that have been coded.

7. Endevor expands the element name mask if it exists (element is the element-name
entered in the first [action] clause of the statement) and executes each action
within the system, including those actions previously performed but not generated
(because they were from an archive file). Remember: all SCL statements are
executed in type sequence order.

8. Endevor assigns each action an action number. As all actions are processed, an
Execution Report is produced. The Execution Report fully expands the action
request, providing the complete system name, subsystem name, type, and stage for
the element being processed. In addition, the report lists all options in effect for
the action. Endevor also produces a Summary Report. This report provides one
line of summary information for each action performed.

Chapter 1. What Is SCL? 1-7

1.2 Process Flow

 1.2.2 Example

The example above displays a typical set of SCL requests. The type processing
sequence has been determined as COPYBOOK, COBOL, MACRO. Processing takes
place as follows:

1. Endevor first checks the system specification. No name mask is found, but the
system in request #4 —PERSONEL—differs from the system in the first three
requests—FINANCE.

2. Endevor returns to the first request to check the type specification.

Remember: All actions within a particular system are executed at the same time.
When a different system name or use of the name mask is encountered, Endevor
returns to the first request in the "initial" system and continues processing from
that point.

3. The type is different for all three requests in system FINANCE. Because type
sequence processing conventions apply, the requests are executed in the following
order:

 Statement #3
 Statement #2
 Statement #1

Before the requests are executed, Endevor checks whether name masks have been
used with stage. The field is the same for all three requests. Therefore, the
actions are executed in the appropriate order.

4. Endevor returns to request #4 and checks the system specification in the remaining
requests. Both request #4 and request #5 contain the same system—PERSONEL.
Request #6, however, contains a different system.

1-8 SCL Reference Guide

1.2 Process Flow

5. Endevor returns to request #4 and checks the type specification. Again, the types
are different, and the requests are executed in type sequence order:

 Statement #4
 Statement #5

Endevor checks the stage and subsystem specifications for a name mask; none is
found. Consequently, Endevor continues processing by executing the requests in
the order shown above.

6. Request #6 is the last request, and contains a name mask in the system
specification. Endevor processes this request by expanding all name masks
encountered in the system, type, stage, and subsystem names and, finally,
executing the actions.

Chapter 1. What Is SCL? 1-9

1.3 Documentation Overview

 1.3 Documentation Overview

This manual is part of a comprehensive documentation set that fully describes the
features and functions of Endevor and explains how to perform everyday tasks. For a
complete list of Endevor manuals, see the PDF Table of Contents file in the PDF
directory, or the Bookmanager Bookshelf file in the Books directory.

The following sections describe documentation and product conventions.

1-10 SCL Reference Guide

1.4 Name Masking

 1.4 Name Masking

A name mask allows you to specify all names, or all names beginning with a
particular string, to be considered when performing an action.

Name masks are valid on:

 ■ Element names

■ System, subsystem, and type names within FROM clauses.

■ RESTRICT and REMOVE RESTRICTION clauses of the DEFINE CCID and
DEFINE SECURITY CLASS statements

 ■ Report syntax

 ■ ISPF panels

 ■ API requests

 ■ Package IDs

Name masks are not valid on:

■ Environment names, except in the FROM ENVIRONMENT field of the WHERE
COMPONENTS EQUAL clause. Refer to the description of the LIST action in
Chapter 4, “Element Action Statements” for additional information.

■ Element names in the following situations:

– When entering a LEVel in a statement

– When using the MEMber clause with a particular action

– When building a package

 1.4.1 Usage

There are three ways to mask names: by using the wildcard character (*), by using the
placeholder character (%), and by using both together.

The wildcard (*) can be used in one of two ways to specify external file names:

■ When coded as the only character of a search string, Endevor returns all members
of the search field. For example, if you coded the statement ADD ELEMENT *,
all elements would be added.

■ When coded as the last character of a search string, Endevor returns all members
of the search field beginning with the characters in the search string preceding the
wildcard. For example:

– The statement ADD ELEMENT UPD* would add all elements beginning with
"UPD", such as UPDATED or UPDATE.

– PKG* would return all package IDs beginning with PKG.

Chapter 1. What Is SCL? 1-11

1.4 Name Masking

Note: You cannot use more than one wildcard in a string. The statement ADD
ELEMENT U*PD* would result in an error.

The placeholder (%), which represents any one character in a string, can also be used
in one of two ways:

■ When coded as the last character in a string, Endevor returns all members of the
search field, beginning with the characters in the search string preceding the
placeholder, but which have no more characters than were coded in the search
string.

– If you coded the statement ADD ELEMENT UPD%, only those elements
with four-character-long names beginning with "UPD" (UPD1 or UPDA, for
example) would be added.

– PKG% returns PKGS, PKGB, PKGC, and so on.

■ It is also possible to use the placeholder multiple times in a single search string.
The statement ADD ELEMENT U%PD% would return all elements with
five-character-long names that have U as the first character, and PD third and
fourth.

The wildcard and the placeholder can be used together, provided that the wildcard
appears only at the end of the search string and is used only once. For example:

■ The statement ADD ELEMENT U%D*, which uses both the wildcard and the
placeholder, would add elements with names of any length that have U as the first
character, any one character as the second character, and D as the third character.

■ P%G* returns PKGABCD, POGS, PIGGY, PPG1234NDVR, and so on.

 1.4.2 Masking Improvements

Endevor's name masking capabilities support the use of both the asterisk (*) as a
wildcard character and the percent sign (%) as a placeholder character. You can use
the name masks on ISPF panels, in SCL, report syntax, and API requests.

Use the asterisk to specify all names, or all names beginning with a particular
character string. Enter the asterisk as the last or only character in any of the eligible
fields, including element name, system name, subsystem name, type name, and stage.
Multiple asterisks are not allowed.

Use the percent sign as a substitute for a single character in a name. For example, if
you typed COPY% as the element name, Endevor would locate all elements with
5-character names beginning with COPY. You can use multiple instances of the %
character. You can also use the % and * characters together.

Refer to the appropriate Endevor document for more specific information on using
name masks and wildcards in SCL, reports, ISPF panels, and API calls.

1-12 SCL Reference Guide

1.5 Syntax Conventions

 1.5 Syntax Conventions

Endevor uses the IBM standard for representing syntax. The following table explains
the syntax conventions:

Syntax Explanation

��────────────────────────────────── Represents the beginning of a syntax
statement.

──────────────────────────────────�� Represents the end of a syntax
statement.

───────────────────────────────────� Represents the continuation of a
syntax statement to the following line.

�─────────────────────────────────── Represents the continuation of a
syntax statement from the preceding
line.

��──KEYword───────────────────────�� Represents a required keyword. Only
the uppercase letters are necessary.

��──variable──────────────────────�� Represents a required user-defined
variable.

��─ ──┬ ┬───────── ──────────────────��
 └ ┘─KEYword─

Represents an optional keyword.
Optional keywords appear below the
syntax line. If coded, only the
uppercase letters are necessary.

��─ ──┬ ┬────────── ─────────────────��
 └ ┘─variable─

Represents an optional user-defined
variable. Optional variables appear
below the syntax line.

��─ ──┬ ┬─KEYword ONE─── ────────────��
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of required,
mutually exclusive keywords. You
must choose one and only one
keyword.

��─ ──┬ ┬─variable one─── ───────────��
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of required,
mutually exclusive, user-defined
variables. You must choose one and
only one variable.

��─ ──┬ ┬─────────────── ────────────��
 ├ ┤─KEYword ONE───
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional,
mutually exclusive keywords.
Optional keywords appear below the
syntax line.

Chapter 1. What Is SCL? 1-13

1.5 Syntax Conventions

Syntax Explanation

��─ ──┬ ┬──────────────── ───────────��
 ├ ┤─variable one───
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional,
mutually exclusive, user-defined
variables. Optional variables appear
below the syntax line.

��──¤─ ──┬ ┬─────────────── ─¤───────��
 ├ ┤─KEYword ONE───
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional
keywords. The stars (¤) indicate that
the keywords are not mutually
exclusive. Code no keyword more
than once.

��──¤─ ──┬ ┬──────────────── ─¤──────��
 ├ ┤─variable one───
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional
user-defined variables. The stars (¤)
indicate that the variables are not
mutually exclusive. Code no variable
more than once.

 ┌ ┐─KEYword ONE───
��─ ──┼ ┼─KEYword TWO─── ────────────��
 └ ┘─KEYword THRee─

Represents a choice of required,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

 ┌ ┐─variable one───
��─ ──┼ ┼─variable two─── ───────────��
 └ ┘─variable three─

Represents a choice of required,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

 ┌ ┐─KEYword ONE───
��─ ──┼ ┼─────────────── ────────────��
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

 ┌ ┐─variable one───
��─ ──┼ ┼──────────────── ───────────��
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

 ┌ ┐─,────────
��──(─ ───

┴─variable─ ─)────────────��

Represents a required variable that can
be repeated. Separate each occurrence
with a comma and enclose any and all
variables in a single set of parenthesis.

1-14 SCL Reference Guide

1.5 Syntax Conventions

Syntax Explanation

��─ ──┬ ┬──────────────────── ───────��
 │ │┌ ┐─,────────
 └ ┘ ─(─ ───

┴─variable─ ─)─

Represents an optional variable that
can be repeated. Separate each
occurrence with a comma and enclose
any and all variables in a single set of
parenthesis.

��──(variable)────────────────────�� Represents a variable which must be
enclosed by parenthesis.

��──'variable'────────────────────�� Represents a variable which must be
enclosed by single quotes.

��──"variable"────────────────────�� Represents a variable which must be
enclosed by double quotes.

��──┤ FRAGMENT REFERENCE ├────────�� Represents a reference to a syntax
fragment. Fragments are listed on the
lines immediately following the
required period at the end of each
syntax statement.

FRAGMENT:
├──KEYword──variable───────────────┤

Represents a syntax fragment.

�────────────────────────.────────�� Represents the period required at the
end of all syntax statements.

1.5.1 Sample Syntax Diagram

Chapter 1. What Is SCL? 1-15

1.5 Syntax Conventions

��──ARChive ELEment──element-name─ ──┬ ┬─────────────────────────── ──────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�──FROm─ ─ENVironment──env-name──SYStem──sys-name───────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─TO─ ──┬ ┬─FILe─── ─dd-name─────────────────�
 └ ┘ ─STAge NUMber──stage-no─ └ ┘─DDName─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.─────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬─────────────────────── ─¤─
 ├ ┤─CCId──ccid────────────
 ├ ┤─COMment──comment──────
 ├ ┤─OVErride SIGNOut──────

└ ┘─BYPass ELEment DELete─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────────────┤

 └ ┘─=──

1.5.2 Syntax Diagram Explanation

Syntax Explanation

ARChive ELEment
element-name

The keyword ARChive ELEment appears on the main
line, indicating that it is required. The variable
element-name, also on the main line, must be coded.

THRough / THRu
element-name

The keywords THRough and THRu appear below the
main line, indicating that they are optional. They are
also mutually exclusive.

FROm ENVironment ...
TYPe type-name

Each keyword and variable in this segment appear on
the main line, indicating that they are required.

STAge stage-id / STAge
NUMber stage-no

The keywords STAge and STAge NUMber appear on
and below the main line, indicating that they are
required, mutually exclusive keywords.

1-16 SCL Reference Guide

1.5 Syntax Conventions

Syntax Explanation

TO ... dd-name The keyword TO appears on the main line, indicating
that it is required. The keywords FILe and DDName
appear on and below the main line, indicating that they
are required, mutually exclusive keywords. The variable
dd-name also appears on the main line, indicating that it
is required.

WHEre clause This clause appears below the main line, indicating that
it is optional. The keyword WHEre appears on the main
line of the clause, indicating that it is required. CCID
and PRO are syntax fragments that appear below the
main line, indicating that they are optional. The stars
(¤) indicate that they are not mutually exclusive. For
details on the CCID and PRO fragments, see the bottom
of this table.

OPTion clause This clause appears below the main line, indicating that
it is optional. The keyword OPTion appears on the
main line of the clause, indicating that it is required.
The keywords CCId, COMment, OVErride SIGNOut,
and BYPass ELEment DELete all appear below the
main line, indicating that they are optional. The stars
(¤) indicate that they are not mutually exclusive.

CCID fragment The keyword CCId appears on the main line, indicating
that it is required. The OF clause appears below the
main line, indicating that it is optional. If you code this
clause, you must code the keyword OF, as it appears on
the main line of the clause. CURrent, ALL, and
RETrieve appear above, on, and below the main line of
the clause, indicating that they are required, mutually
exclusive keywords. CURrent appears above the main
line, indicating that it is the default. If you code the
keyword OF, you must choose one and only one of the
keywords.

The keywords EQual and = appear above and below the
main line, indicating that they are optional, mutually
exclusive keywords. EQual appears above the main
line, indicating that it is the default. You can include
only one. The variable ccid appears on the main line,
indicating that it is required. The arrow indicates that
you can repeat this variable, separating each instance
with a comma. Enclose any and all variables in a single
set of parenthesis.

Chapter 1. What Is SCL? 1-17

1.5 Syntax Conventions

Syntax Explanation

PRO fragment The keyword PROcessor GROup appears on the main
line, indicating that it is required. The keywords EQual
and = appear on and below the main line, indicating that
they are required, mutually exclusive keywords. You
must include one. The variable group name appears on
the main line, indicating that it is required. The arrow
indicates that you can repeat this variable, separating
each instance with a comma. Enclose any and all
variables in a single set of parenthesis.

1.5.3 General Coding Information

In coding syntax, you must adhere to certain rules and guidelines regarding valid
characters, incompatible commands and clauses, and ending statements. In addition,
knowing how the SCL parser processes syntax will help you resolve errors and
undesired results. The following sections outline these rules and guidelines.

 1.5.3.1 Valid Characters

The following characters are allowed when coding syntax:

 ■ Uppercase letters

 ■ Lowercase letters

 ■ Numbers

 ■ National characters

 ■ Hyphen (-)

 ■ Underscore (_)

The following characters are allowed when coding syntax, but must be enclosed in
either single (') or double (") quotation marks:

 ■ Space

 ■ Tab

 ■ New line

 ■ Carriage return

 ■ Comma (,)

 ■ Period (.)

■ Equal sign (=)

■ Greater than sign (>)

■ Less then sign (<)

1-18 SCL Reference Guide

1.5 Syntax Conventions

■ Parenthesis ()

■ Single quotation marks

■ Double quotation marks

A string containing single quotation marks must be enclosed in double quotation
marks. A string containing double quotation marks must be enclosed in single
quotation marks.

To remove information from an existing field in the database, enclose a blank space in
single or double quotation marks. For example, the following statement removes the
default CCID for user TCS:

DEFINE USER TCS

DEFAULT CCID " ".

Note: The characters "*" and "%" are reserved for name masking. See the section
“Name Masking” earlier in this chapter for more information.

1.5.3.2 Incompatible Commands and Clauses

The following commands and clauses are mutually exclusive:

■ THRough and MEMber clauses within any action except LIST

■ Endevor location information (environment, system, subsystem, type, and stage)
and data set names (DSName)

■ File names (DDName) and data set names (DSName)

■ The stage id (STAge / STAge ID) and the stage number (STAge NUMber)

■ The SET TO Endevor location information and the SET TO MEMber clause

1.5.3.3 Ending A Statement

You must enter a period at the end of each statement. If no period is found, you
receive an error message and the job terminates.

 1.5.3.4 &&ACTION Statement

If you use the &&ACTION statement, you must have previously coded a SET
ACTION statement. Refer to the descriptions of SET ACTION in the Set Action
section of Chapter 3, “Set, Clear, and EOF Statements”, and the description of
&&ACTION in the &&ACTION Statement section of Chapter 4, “Element Action
Statements”, for complete coding information.

Chapter 1. What Is SCL? 1-19

1.5 Syntax Conventions

1.5.3.5 SCL Parsing Information

■ The SCL parser does not look for information in columns 73-80 of the input.
Therefore, be sure that all relevant information is coded in columns 1-72.

■ The SCL parser does not catch duplicate clauses coded for an SCL request. If
you code the same clause twice, SCL uses the Boolean "AND" to combine the
clauses. If the result is invalid, you receive an error message.

■ If you enter an asterisk (*) in column 1, the remainder of the line is considered a
comment by the SCL parser and is ignored during processing.

■ Any value found to the right of the period terminating the SCL statement is
considered a comment by the SCL parser and is ignored during processing.

1.5.3.6 SCL Continuation Syntax Rules

All SCL parameters that span multiple lines must be enclosed in single quotes. SCL
keyword parameters cannot span multiple lines—only the parameter values. The
syntax required to span a paramter value should lead with an apostrophe or quotation
mark at the beginning of the specification and a trailing apostrophe or quotation mark
of the value. Spaces that are not surrounded by non-blank characters will not be
included in the text string. Example:

ADD ELEMENT 'Spanned

ElementName' CCID 'This is the chan

ge control number'

This would result in an element value of "SpannedElementName" and a CCID value of
"This is the change control number".

1-20 SCL Reference Guide

1.6 Syntax for Long File and Path Names

1.6 Syntax for Long File and Path Names

The following considerations apply to the Path clause for ADD, UPDATE, COPY and
RETRIEVE statements:

■ The PATH clause is mutually exclusive with the FILE or Data Set clauses.

■ The HFSFile clause is mutually exclusive with a Member clause.

■ The PATH name must begin with a “/” and be terminated with a “/” and cannot
be followed by the file name.

■ The HFS file name can be up to 255 bytes in length.

■ The PATH name can be up to 768 bytes in length.

1.6.1 HFSFile Syntax Rules

A filename can be up to 255 characters long. To be portable, the filename should use
only the characters in the POSIX portable filename character set:

■ Uppercase or lowercase A to Z

■ Numbers 0 to 9

 ■ Period (.)

 ■ Underscore (_)

 ■ Hyphen (-)

Do not include any nulls or slash characters in a filename.

Doublebyte characters are not supported in a filename and are treated as singlebyte
data. Using doublebyte characters in a filename may cause problems. For instance, if
you use a doublebyte character in which one of the bytes is a . (dot) or / (slash), the
file system treats this as a special delimiter in the pathname.

The shells are case-sensitive, and distinguish characters as either uppercase or
lowercase. Therefore, FILE1 is not the same as file1.

A filename can include a suffix, or extension, that indicates its file type. An extension
consists of a period (.) and several characters. For example, files that are C code
could have the extension .c, as in the filename dbmod3.c. Having groups of files with
identical suffixes makes it easier to run commands against many files at once.

Chapter 1. What Is SCL? 1-21

1.6 Syntax for Long File and Path Names

1.6.2 Path Name Syntax Rules

The path name value can be up to 768 characters long. It can contain only the
following characters:

 ■ Uppercase letters

 ■ Lowercase letters

 ■ Numbers

 ■ National characters

 ■ Slash (/)

 ■ Plus (+)

 ■ Hyphen (-)

 ■ Period (.)

1.6.3 Element Name Syntax Rules

The Element name can be up to 255 characters long. It can contain only the following
characters:

 ■ Uppercase letters

 ■ Lowercase letters

 ■ Numbers

 ■ National characters

 ■ Period (.)

 ■ Hyphen (-)

 ■ Underscore(_)

Element names name include a percent sign (%) in any column as a placeholder
character in most SCL. The final one or more characters may be replaced in SCL and
some panels with an asterisk (*) as a wild character for selection purposes.

1-22 SCL Reference Guide

Chapter 2. About the SCL Language

The SCL language consists of SCL statements written in an easy-to-follow format. The
format must always include an action, an element, and one or more required clauses.
Optional clauses can be added to the request to provide Endevor with additional
information about the selected elements. This chapter discusses general coding
information as well as coding conventions unique to Endevor (and SCL).

Chapter 2. About the SCL Language 2-1

2.1 SCL Statements

 2.1 SCL Statements

There are several types of SCL statements:

 ■ Set statements

 ■ Clear statements

■ EOF (EOJ) statement

■ Element action statements (also referred to as action statements)

■ Environment definition statements

■ Package action statements

A brief overview of each type of statement follows.

Note: SET and CLEAR statements apply only to element action statements.

 2.1.1 Set Statements

SET statements are global default statements that establish values for subsequent
element action statements. A SET statement establishes applicable keyword values (for
example, FROM and TO) for specific items that may be omitted from selected action
statements. If a certain parameter is used (or required) but not coded in a particular
action statement, Endevor looks for that information in a corresponding SET statement.

SET statements also allow consistency across several actions. If you want to use a
particular option (such as CCID or comments) for several actions or perform actions
against those elements in a specific location (TO or FROM), code the appropriate SET
statement. The data you enter is applied to every subsequent action. SET statements
are in effect until another SET statement or a CLEAR statement is encountered, or
processing ends.

You can define the following SET statements:

 ■ SET ACTION

 ■ SET BUILD

 ■ SET FROM

 ■ SET OPTIONS

 ■ SET STOPRC

 ■ SET TO

 ■ SET WHERE

2-2 SCL Reference Guide

2.1 SCL Statements

 2.1.2 Clear Statements

A CLEAR statements clear the information designated by a related SET statement.
When you are working with a series of element actions and need to remove
information established in a SET statement, code a parallel CLEAR statement. The
CLEAR statement remains in effect until you enter another related SET statement or
until processing ends.

CLEAR statements only apply to SET statements. Similar information entered in an
element action statement is not affected by a CLEAR statement.

You can use the following CLEAR statements:

 ■ CLEAR BUILD

 ■ CLEAR FROM

 ■ CLEAR OPTIONS

 ■ CLEAR TO

 ■ CLEAR WHERE

2.1.3 EOF (EOJ) Statement

The EOF or EOJ (End of File or End of Job) statement instructs Endevor to stop
parsing the SCL syntax at a particular point. Using this statement eliminates the need
to manually delete any statements you do not want Endevor to perform.

You can enter either EOF or EOJ. Use the value to which you are most accustomed.

2.1.4 Element Action Statements

Element action statements operate against an element or a group of elements. The
element actions consist of the following:

■ ADD—Puts a member under Endevor control from an external data set.

■ ARCHIVE—Writes the current version of an element to a sequential file (or
archive data set).

■ COPY—Copies an element from an archive data set to a data set external to
Endevor.

■ DELETE—Erases base and delta forms of an element and removes related
information from a master control file or component list.

■ GENERATE—Creates an executable form of an element.

■ LIST—Creates a list of elements or members that meet specific selection criteria.

■ MOVE—Moves elements between stages, within or across environments.

■ PRINT—Prints element or member information.

■ RESTORE—Restores elements to Endevor from an archive data set.

Chapter 2. About the SCL Language 2-3

2.1 SCL Statements

■ RETRIEVE—Copies elements from Endevor to an external data set.

■ SIGNIN—Removes the user signout associated with an element.

■ TRANSFER—Transfers an element from one location to another: Endevor to
Endevor, Endevor to an archive data set, or archive data set to Endevor.

■ UPDATE—Updates an element from an external data set.

2.1.5 Environment Definition Statements

Environment definition statements provide the ability to manage environment
definitions for all inventory structures using SCL. Environment definition statements
allow you to create, update, and delete inventory definitions. The statements manage
the following environment definitions:

 ■ Approver group

■ Approver group relationships

 ■ Element types

■ Package shipment data set mapping rules

■ Package shipment destination

 ■ Processor groups

 ■ Processor symbols

 ■ Subsystem

 ■ Systems

 ■ Type sequence

2.1.6 Package Action Statements

Package action statements provide the ability to perform package processing in batch
using SCL. Package action statements consist of the following:

■ APPROVE PACKAGE—Approves a package for execution.

■ ARCHIVE PACKAGE—Copies the package definitions to an external data set.

■ BACKIN PACKAGE—Backs a package in, reversing the BACKOUT PACKAGE
action.

■ BACKOUT PACKAGE—Backouts the change package to restore the executable
and output modules to the state they were in prior execution.

■ CAST PACKAGE—Casts a package, which freezes the data and prevents further
changes at that time.

■ COMMIT PACKAGE—Commits a package removing all backout/backin data.

■ DEFINE PACKAGE—Creates a new or updates an existing package.

■ DELETE PACKAGE—Deletes an entire package from Endevor.

2-4 SCL Reference Guide

2.1 SCL Statements

■ DENY PACKAGE—Denies execution of a package.

■ EXECUTE PACKAGE—Executes a package.

■ EXPORT PACKAGE—Writes the SCL associated with a package to an external
data set.

■ RESET PACKAGE—Resets a package back to a status of In-edit.

■ SUBMIT PACKAGE—Submits a JCL job stream to execute one or more
packages.

For information on package processing, see the Packages Guide.

Chapter 2. About the SCL Language 2-5

2.2 Statements and Clauses

2.2 Statements and Clauses

 2.2.1 Overview

References are made to statements and clauses throughout this manual. For SCL
purposes, these terms are defined as follows:

■ A statement begins with an action (for example, ADD or DEFINE) and ends with
a period (.). A statement consists of one or more clauses, depending on how you
code the SCL syntax.

■ A clause is an individual line of information within each statement (for example,
FROM ENVIRONMENT TEST or WHERE CCID EQ 'FIX01'). Any number of
clauses may be contained within one statement.

Note the following example:

1.MOVE ELEMENTS COPY�1

2. FROM ENVIRONMENT DEMO

3. SYSTEM FINANCE

4. SUBSYSTEM ACCTPAY

5. TYPE COBOL

6. WHERE CCID EQ FIX'

7. OPTIONS WITH HISTORY.

Lines 1-7 form a statement. Line 1 begins with an action (MOVE) and line 7 ends
with a period.

Lines 2-5 constitute a single clause (a FROM clause). Lines 6 and 7 are individual
clauses. Each of these clauses provide information essential to the statement.

 2.2.2 Coding Order

You must enter the action clause first. You can enter the remaining clauses in any
order. Within each clause, however, you must code the sub-clauses in the order in
which they are shown in the syntax.

In the example above, you might code the FROM clause last and the OPTIONS clause
immediately after the MOVE ELEMENTS clause. Within the FROM clause, though,
you must enter ENVIRONMENT first, followed by SYSTEM, followed by
SUBSYSTEM, followed by TYPE.

2-6 SCL Reference Guide

2.3 Element Action Examples

2.3 Element Action Examples

The following examples demonstrate different ways you can use the element action
SCL. The four examples all produce the same result; the only difference is in the
number and types of statements and clauses used.

Note: The examples shown here apply to the general structure of environment
definition and package action syntax. The major difference, and the reason examples
are shown for the element actions, is the use of SET and CLEAR statements.

 2.3.1 Example 1

Example 1 illustrates long-hand SCL. The TRANSFER, FROM, TO, WHERE, and
OPTIONS statements are repeated for each element.

TRANSFER ELEMENT COPY�1

 FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE COPYBOOK

 STAGE NUMBER2

TO ENVIRONMENT PROD

 STAGE NUMBER1

WHERE CCID EQ 'FIX�1'

OPTIONS COMMENT 'FIX BUG'.

TRANSFER ELEMENT COPY�2

 FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE COPYBOOK

 STAGE NUMBER2

 TO ENVIRONMENT PROD

 STAGE NUMBER1

 WHERE CCID EQ 'FIX�1'

 OPTIONS COMMENT 'FIX BUG'.

TRANSFER ELEMENT PROG�2

 FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE COBOL

 STAGE NUMBER2

 TO ENVIRONMENT PROD

 STAGE NUMBER1

 WHERE CCID EQ 'FIX�1'

 OPTIONS COMMENT 'FIX BUG'.

Note that the information coded in the FROM clauses (except in the last FROM clause
where TYPE is different), TO clause, WHERE clause, and OPTIONS clause is the
same. Although there is nothing wrong with coding every line of a request, you may
find it time-consuming when you need to code several requests. Therefore, it is

Chapter 2. About the SCL Language 2-7

2.3 Element Action Examples

important to consider several "shortcuts" when coding the element action syntax.
Examples 2 - 4 on the following pages demonstrate these shortcuts.

 2.3.2 Example 2

Example 2 illustrates the concept of global settings, using SET statements to assign the
location (FROM and TO) information, as well as common WHERE and OPTIONS
data.

SET FROM ENVIRONMENT DEMO

 STAGE NUMBER2.

SET TO ENVIRONMENT PROD

 STAGE NUMBER 1.

SET WHERE CCID EQ 'FIX�1'.

SET OPTIONS COMMENT 'FIX BUG'.

TRANSFER ELEMENT COPY�1.

TRANSFER ELEMENT COPY�2.

SET FROM TYPE COBOL.

TRANSFER ELEMENT PROG�1.

In this example, all SET statements coded at the beginning of the syntax are applied to
the first two TRANSFER action requests. Because the type is different for the third
TRANSFER action request, however, a new SET FROM statement has been
entered—containing only the different information.

This new type will be applied to the subsequent TRANSFER request. But, all other
previously-coded information will be applied also. Remember: the data entered in a
SET statement remains in effect until a new, like SET statement (or a CLEAR
statement) is encountered.

 2.3.3 Example 3

Example 3 illustrates a combination of global and local settings.

2-8 SCL Reference Guide

2.3 Element Action Examples

SET FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE COPYBOOK

 STAGE NUMBER2.

SET TO ENVIRONMENT PROD

 STAGE NUMBER1.

SET WHERE CCID EQ'FIX�1'.

SET OPTIONS COMMENT 'FIX BUG'.

TRANSFER ELEMENT COPY�1.

TRANSFER ELEMENT COPY�2.

TRANSFER ELEMENT PROG�1

 FROM TYPE COBOL.

In this example, the SET statements are applied to all three TRANSFER action
requests, with the exception of type in the third request.

Remember: a value entered locally overrides a like value in a SET statement.
Therefore, coding the clause FROM TYPE COBOL is all that is required in the third
request. The remaining location, WHERE, and OPTIONS information defaults to the
entries coded in the previous SET statements.

 2.3.4 Example 4

Example 4 illustrates the use of the name mask. The name mask indicates that all
elements beginning with the indicated letters should be considered for an action.

TRANSFER ELEMENT ABC�

 FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE �

 STAGE NUMBER2

 TO ENVIRONMENT PROD

 STAGE NUMBER 1

 WHERE CCID EQ 'FIX�1'

 OPTIONS COMMENT 'FIX BUG'.

In this example, use of the asterisk alone in the TRANSFER ELEMENTS clause
indicates that all elements—as long as the remaining selection criteria is met—should
be selected for the TRANSFER.

Use of the name mask in the TYPE clause indicates that any type will be acceptable in
the TRANSFER action.

Chapter 2. About the SCL Language 2-9

2.3 Element Action Examples

Using the name mask with the element name and the type eliminates the need to set
and change SET statements (as was done in examples 2 and 3). Example 4 instructs
Endevor to look for all elements, no matter what type, from the Endevor location
indicated (in the environment, system, subsystem, and stage number clauses),
associated with a CCID of FIX01. And, the comment FIX BUG will be applied to all
elements meeting that selection criteria.

2-10 SCL Reference Guide

Chapter 3. Set, Clear, and EOF Statements

This chapter illustrates the syntax for SET, CLEAR, and EOF statements, and explains
the coding rules specific to each statement. SET, CLEAR, and EOF statements apply
only to element action statements (described in the next chapter). See the About the
SCL Language section for examples of syntax using SET and CLEAR statements.

Chapter 3. Set, Clear, and EOF Statements 3-1

3.1 Set Statements

 3.1 Set Statements

A SET statement sets up applicable keyword values (for example, FROM, TO) for
specific items that are omitted from subsequent element action statements. If a
parameter is required and not specifically coded with an element action statement, a
corresponding SET statement must precede that action statement. The SET statement
can be reissued to change the default value of a particular keyword any number of
times within an SCL stream.

You can remove a SET statement by using a CLEAR statement for the same keyword.
Be sure to issue the CLEAR statement after the related element action statement;
otherwise, the SET statement is canceled and you may receive an error message.
(CLEAR statements are explained later in this chapter.)

Note: The SET statement establishes default values; it is never executed.
 Therefore, no element processing is involved.

 3.1.1 Conventions

The following conventions apply to all SET statements.

■ SET statements are applied globally to all element action statements following
the entry. Each SET statement remains in effect until one of the following
conditions occurs:

– Endevor encounters another, like SET statement, which overrides the existing
SET statement.

– Endevor encounters a CLEAR statement for that particular SET statement. For
example, a CLEAR WHERE statement would cancel a SET WHERE
statement.

– Processing for this job ends; that is, an EOF or EOJ statement is encountered.

■ SET statements, and the information contained in each, apply only where
similar data appears on a "local" level; that is, within a specific action
statement. For example, if one of the actions following a SET TO statement does
not require any TO data, the SET TO statement is ignored.

■ Information in the SET statement will be replaced by any overriding SET
values coded locally. That is, if the element action syntax contains the variable
specified in the SET statement, the like information in the SET statement is
ignored. For example, if you enter system and subsystem names in the FROM
clause for a COPY action, Endevor uses those names rather than the names coded
in the related SET FROM statement.

■ If the information is not available in the element action statement, the like
information in the SET statement is applied to the syntax. For example, if you
do not code a system and subsystem in the FROM clause for the COPY action,
the information will be taken from the related SET FROM statement.

3-2 SCL Reference Guide

3.1 Set Statements

 3.1.2 Set Action

The SET ACTION statement is used in conjunction with the &&ACTION statement
(described in Chapter 4,
 "Element Action Statements"). When you use this statement, Endevor sets the action
in all following &&ACTION statements to the action indicated. The specified action
applies until the system encounters another SET ACTION or a CLEAR ACTION
statement, or when processing is terminated.

 3.1.3 Syntax

��──SET ACTion─ ──┬ ┬─ADD────── ─.───────────────────────────────────────��
 ├ ┤─ARChive──
 ├ ┤─COPy─────
 ├ ┤─DELete───
 ├ ┤─GENerate─
 ├ ┤─LISt─────
 ├ ┤─MOVe─────
 ├ ┤─PRInt────
 ├ ┤─REStore──
 ├ ┤─RETrieve─
 ├ ┤─SIGnin───
 ├ ┤─TRAnsfer─
 └ ┘─UPDate───

 3.1.3.1 Syntax Rules

SET ACTION

When you use this statement, Endevor sets the action in all following &&ACTION
statements to the action you indicate in this statement. The action specifed applies
until the system encounters another SET ACTION or a CLEAR ACTION statement, or
when processing is terminated.

Although you can enter more than one SET ACTION statement in your syntax, only
the action indicated in the SET ACTION statement immediately preceding the
&&ACTION statement is performed.

You can code the following actions in the SET ACTION statement:

ADD—adds an element to Stage 1 in Endevor.

ARCHIVE—writes the current version of an element to a sequential file (or archive
data set).

COPY—copies an element from an archive data set to a data set external to Endevor.

DELETE—removes an element from either Stage 1 or Stage 2.

Chapter 3. Set, Clear, and EOF Statements 3-3

3.1 Set Statements

GENERATE—executes the generate processor for an element(s).

LIST—lists elements from the Master Control File or an archive data set, or lists
members from a library.

MOVE—moves elements from one map location to another.

PRINT—prints either element or member information.

RESTORE—restores an element from an archive data set to Endevor.

RETRIEVE—copies an element from either stage to a user data set.

SIGNIN—removes the user signout associated with an element.

TRANSFER—transfers an element from one location to another: Endevor to Endevor,
Endevor to an archive data set, or an archive data set/unload tape to Endevor.

UPDATE—updates an element, in Stage 1 only.

 3.1.4 Set Build

The SET BUILD statement applies only to the BUILD statement in the LIST action
(see the explanation of LIST earlier in this chapter). This statement has three parts:

■ ACTION determines the action that is placed in the list of action cards generated
by the LIST request.

■ LEVEL determines whether the element's current version and level is listed.

■ WITH COMPONENTS determines whether a component list should be included
in the listing for the specified element.

Note: The WITH COMPONENTS option pertains to the Endevor ACM product only.
If you are a Endevor ACM user, refer to the Automated Configuration Option Guide
for additional information.

 3.1.5 Syntax

3-4 SCL Reference Guide

3.1 Set Statements

��──SET BUIld──¤─ ──┬ ┬────────────────────── ─¤──.──────────────────────��
 ├ ┤ ─ACTion─ ──┬ ┬─&&Action─
 │ │├ ┤─ADD──────
 │ │├ ┤─ARChive──
 │ │├ ┤─COPy─────
 │ │├ ┤─DELete───
 │ │├ ┤─GENerate─
 │ │├ ┤─LISt─────
 │ │├ ┤─MOVe─────
 │ │├ ┤─PRInt────
 │ │├ ┤─REStore──
 │ │├ ┤─RETrieve─
 │ │├ ┤─SIGnin───
 │ │├ ┤─TRAnsfer─
 │ │└ ┘─UPDate───
 ├ ┤ ─LEVel─ ──┬ ┬─CURrent─ ──
 │ │├ ┤─NONe────
 │ │└ ┘─ACTUal──
 └ ┘─WITh COMponent───────

 3.1.5.1 Syntax Rules

SET BUILD ACTION

SET BUILD ACTION applies to any element, whether from Endevor or an external
file (that is, a sequential file or a library). The action coded stays in effect until
Endevor encounters the next SET BUILD ACTION or a CLEAR BUILD ACTION
statement, or processing ends.

The following can be coded in the SET BUILD ACTION statement:

&&ACTION— indicates that an action will be designated for this element at a later
time.

ADD—adds an element to Stage 1 in Endevor.

ARCHIVE—writes the current version of an element to a sequential file (or archive
data set).

COPY—copies an element from an archive data set to a data set external to Endevor.

DELETE—removes an element from either Stage 1 or Stage 2 in Endevor.

GENERATE—executes the generate processor for the current level of the element.

LIST—lists elements from the Master Control File or an archive data set, or lists
members from a library.

MOVE—moves elements from one map location to another.

Chapter 3. Set, Clear, and EOF Statements 3-5

3.1 Set Statements

PRINT—prints either information relating to an element (if executed against Endevor)
or the source of the selected members (if executed against an external library).

RESTORE—restores an element from an archive data set back to Endevor.

RETRIEVE—copies an element from either stage to a user data set (a sequential file,
library, or PDS).

SIGNIN—removes the user signout associated with either a Stage 1 or a Stage 2
element.

TRANSFER—transfers an element from one location to another: Endevor to Endevor,
Endevor to an archive data set, or archive data set/unload tape to Endevor.

UPDATE—updates an element, in Stage 1 only.

SET BUILD LEVEL

SET BUILD LEVEL applies only to elements in Endevor (as opposed to those
elements currently in external files). The level coded stays in effect until Endevor
encounters the next SET BUILD LEVEL or a CLEAR BUILD LEVEL statement, or
processing ends.

The following options apply to the SET BUILD LEVEL statement.

■ CURRENT—If the WHERE COMPONENTS EQUAL clause has not been coded
for the action, or no component list exists (that is, the Endevor ACM product is
not installed), the system defaults to the current level of the element.

■ NONE—The current version and level of the element are not to be listed on the
action cards generated by the LIST request.

■ ACTUAL—The actual level of each component as recorded in the component list,
rather than the current level of the element as recorded in the Master Control File,
should be used to build the element action statement.

If the WHERE COMPONENTS EQUAL clause has not been coded, or no
component list exists, (that is, Endevor ACM product is not installed), the current
level of the element is listed.

SET BUILD WITH COMPONENTS

SET BUILD WITH COMPONENTS indicates that action cards should be generated
for every input component that is associated with the specified element. If you enter
this clause, you must also have a WHERE COMPONENTS EQUAL clause coded,
either in the LIST action or as part of a SET WHERE statement. SET BUILD WITH
COMPONENTS is in effect until the system encounters a CLEAR BUILD WITH
COMPONENTS statement or processing ends.

Note: This option pertains to the Endevor ACM product only. If you are a Endevor
ACM user, refer to the Automated Configuration Option Guide for additional
information.

3-6 SCL Reference Guide

3.1 Set Statements

 3.1.6 Set From

The SET FROM statement applies to each element action that uses—but does not
contain all or part of—a FROM clause, and remains in effect until the system
encounters another SET FROM statement or a CLEAR FROM statement, or when
processing ends.

The exact information used from the SET FROM statement depends on both the
specific action and the data you have entered in that action statement. What you enter
in the action's FROM clause overrides that particular entry in the SET FROM
statement. For example, you code all Endevor location information (environment,
system, subsystem, type, and stage number or stage ID) in a SET FROM statement.
Then, when coding a RETRIEVE statement, you enter a different type. Endevor
determines the FROM location by applying all SET FROM information except for the
type, which is taken from the RETRIEVE statement.

Three types of information can be provided by the SET FROM statement, depending
on the action you enter.

■ Some actions require only Endevor location information.

■ Some actions require only a file name (DDname) or data set name.

■ Some actions require both a file name (DDname) and Endevor location
information.

Each type of information is explained in the following pages. See the individual
element action descriptions to determine the requirements for each action.

 3.1.7 Syntax

��──SET FROm─ ──┬ ┬─SYSOut── ─.────��
 ├ ┤─C1Print───────────────────────────────────────
 ├ ┤ ──┬ ┬─FILe─── ─dd-name───────────────────────────
 │ │└ ┘─DDName─
 ├ ┤ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 │ │└ ┘ ─MEMber──member-name─

└ ┘─┤ LOCATION ├──────────────────────────────────

LOCATION:
├─ ─ENVironment──env-name─ ─SYStem──sys-name──SUBsystem──subsys-name─────�

�─ ─TYPe──type-name─ ──┬ ┬──────────────────────── ────────────────────────┤
 ├ ┤─STAge──stage-id────────
 └ ┘ ─STAge NUMber──stage-no─

Chapter 3. Set, Clear, and EOF Statements 3-7

3.1 Set Statements

 3.1.7.1 Syntax Rules

SET FROM ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

This clause identifies the Endevor location information. Elements in Endevor are
identified by environment, system, subsystem, type, and stage (ID or number). Several
actions require all or part of this information in the FROM clause. Whatever data you
do not code in the syntax of the specific action must be entered in the SET FROM
statement.

Listed below is a brief definition of each identifier.

■ ENVIRONMENT—The functional areas within an organization. Environment
names can be up to 8 characters in length.

■ SYSTEM—The applications at a site. System names can be up to 8 characters in
length.

■ SUBSYSTEM—Specific applications within a system. Subsystem names can be
up to 8 characters in length.

■ TYPE—Categories of source code. Type names can be up to 8 characters in
length.

■ STAGE—A stage in a software life cycle. You refer to stages in SCL statements
by one of the following:

– STAGE ID—A 1-character, alphanumeric stage identifier.

– STAGE NUMBER—Either 1 or 2. Indicates the position of a stage within
the current environment.

See the User Guide for complete information about each term.

You can use a name mask with the system, subsystem, and type names, as well as
with both stage indicators.

Depending on the particular action, you may have a choice when entering a stage
indicator (that is, ID or number). In this situation, the indicator is required, but you
decide whether to enter an ID or stage number. If only one type of stage indicator
appears in the SCL syntax, you must enter that specific value.

SET FROM FILE (DDNAME) dd-name
 SITE site-id
 ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no
 DSNAME dataset-name

3-8 SCL Reference Guide

3.1 Set Statements

Often, an action requires that only a file name or data set name be entered to indicate
a FROM location. Follow these rules when specifying this clause:

■ When you enter a file name (DDname), be sure that the appropriate JCL is coded
for the entry.

■ When you enter a data set name, be sure to enclose the name in quotes (single or
double) if there is a period in the name; for example, the data set TEST.LIB must
be coded as 'TEST.LIB'.

Note: You cannot code both a file name (or DDname) and a data set name. If you
do, you receive an error message. You also receive an error message if you code
Endevor location information along with a data set name.

Occasionally, you are required to enter both a file name and Endevor location
information for the element. Review the conventions listed above for coding
information about each of these entries.

Note also that:

■ With these particular actions, you can optionally specify a particular site, to
further qualify the FROM location of the element. Site indicates the location at
which Endevor is installed. The site ID is one character in length.

■ You must enter the file name (DDname) first. If you enter Endevor location
information before the file name, that data is ignored and you receive an error
message.

 3.1.8 Set Options

The SET OPTIONS statement tells Endevor to apply one or a series of options to all
subsequent actions, until the next SET OPTIONS statement or a CLEAR OPTIONS
statement is encountered, or processing ends. The exact options used depend on the
action specified and the data you have entered in that element action statement:

■ Those options that do not apply to the action are ignored.

■ If you enter a particular option in the element action statement and have coded
that option in the SET OPTIONS statement, the entry in the action statement
overrides the SET OPTIONS selection.

 3.1.9 Syntax

Chapter 3. Set, Clear, and EOF Statements 3-9

3.1 Set Statements

��──SET OPTion──¤─ ──┬ ┬─── ─¤──.──────────��
 ├ ┤─CCId──ccid──────────────────────────────
 ├ ┤─COMment──comment────────────────────────
 ├ ┤─COPyback────────────────────────────────

├ ┤─DELete input source─────────────────────
 ├ ┤─DETail report───────────────────────────
 ├ ┤─EXPand includes─────────────────────────

├ ┤─IGNore generate failed──────────────────
 ├ ┤─JUMp────────────────────────────────────
 ├ ┤─NEW VERsion──version────────────────────
 ├ ┤─NOCc────────────────────────────────────
 ├ ┤─NO SIGNOut──────────────────────────────
 ├ ┤─OVErride SIGNOut────────────────────────
 ├ ┤─ONLy COMPonent──────────────────────────
 ├ ┤─REPlace MEMber──────────────────────────
 ├ ┤ ─SHOw TEXt─ ──┬ ┬────────────── ────────────
 │ │└ ┘──PLUs n lines
 ├ ┤─SYNchronize─────────────────────────────

├ ┤─UPDate if present───────────────────────
 ├ ┤─WITh HIStory────────────────────────────

├ ┤──┬ ┬─BYPass DELete PROcessor─ ────────────
│ │└ ┘─BYPass ELEment DELete───
├ ┤──┬ ┬─BYPass GENerate PROcessor───────────

 │ │└ ┘ ─PROcessor GROup─ ──┬ ┬─EQ─ ─group name─
 │ │└ ┘─=──
 ├ ┤ ─COMPonent─ ──┬ ┬─BROwse── ─────────────────
 │ │├ ┤─CHAnge──
 │ │├ ┤─HIStory─
 │ │├ ┤─SUMmary─
 │ │└ ┘─MASter──
 ├ ┤──┬ ┬─NOSearch─ ───────────────────────────
 │ │└ ┘─SEArch───
 └ ┘──┬ ┬─RETain SIGNOut───── ─────────────────
 ├ ┤─SIGNin─────────────
 └ ┘ ─SIGNOut TO──userid─

 3.1.9.1 Syntax Rules

SET OPTIONS

The SET OPTIONS statement tells Endevor to apply one or a series of options to all
subsequent actions, until the next SET OPTIONS statement or a CLEAR OPTIONS
statement is encountered, or processing ends. The exact options used depend on the
action you specify and the data you enter in that element action statement:

You can code the following options in the SET OPTIONS statement:

BYPASS DELETE PROCESSOR—tells Endevor not to execute the delete processor
for this element.

BYPASS ELEMENT DELETE—tells Endevor not to automatically delete the
element in the FROM location after performing the action.

BYPASS GENERATE PROCESSOR—indicates that Endevor should not execute the
generate processor for this element.

3-10 SCL Reference Guide

3.1 Set Statements

CCID ccid—specifies a 1- to 12-character CCID.

COMMENT comment—specifies a 1- to 40-character comment.

COMPONENT—tells Endevor to print component list information for the element
specified.

BROWSE—tells Endevor to print all statements in the specified level of the element,
indicating the level at which each statement was inserted.

CHANGES—tells Endevor to print all inserts and deletes made to the element at the
level specified.

HISTORY—tells Endevor to print all statements in all levels of the element.

SUMMARY—tells Endevor to print one line of summary information for each level.

MASTER—tells Endevor to print Master Control File information for the element.

COPYBACK—tells Endevor to copy the current level of an element back to the target
stage for a GENERATE action, prior to generating the element.

DELETE INPUT SOURCE—tells Endevor to delete a member from the library in
which it originated.

DETAIL REPORT—tells Endevor to provide detail information in the Execution
Report. Endevor, by default, lists only those elements matching the selection criteria
you specify. If you select the DETAIL REPORT option, every element searched is
listed in the report—whether or not a match is found.

EXPAND INCLUDES—tells Endevor to expand INCLUDE statements when the
element is copied to a source output library.

IGNORE GENERATE FAILED—enables processing to continue when the generate
and/or move processors associated with a particular element have failed.

JUMP—tells Endevor to notify the user if an element exists at an intermediate,
non-map stage between the source and target stages of a MOVE.

NEW VERSION—allows you to assign a different version number to the TO location
element. Simply enter the number (1-99 inclusive, leading zeros optional) that you
want to use.

NOCC—tells Endevor not to print a header on each page of output.

NOSEARCH—tells Endevor to search only in the current environment.

NO SIGNOUT—tells Endevor to retrieve an element without signing it out.

Chapter 3. Set, Clear, and EOF Statements 3-11

3.1 Set Statements

OVERRIDE SIGNOUT—enables you to access an element that has been signed out
to a user ID other than your own. Use OVERRIDE SIGNOUT with caution to avoid
regressing changes made by another user.

ONLY COMPONENTS—allows you to delete the component lists for an element,
but not the element itself.

PROCESSOR GROUP EQUAL/EQ) /= group name—specifies a 1- to 8-character
processor group name.

REPLACE MEMBER—tells Endevor to replace an existing member in a target
library with the element specified in the element action statement.

RETAIN SIGNOUT—tells Endevor to retain the current signout for an element.

SEARCH—tells Endevor to search for elements along the map.

SHOW TEXT PLUS n LINES—tells Endevor to print the line of source code that
contains a specified text string, plus a designated number of lines of code before and
after the text string.

SIGNIN—allows you to override a RETAIN SIGNOUT or SIGNOUT TO clause in a
SET OPTIONS statement.

SIGNOUT TO—allows you to sign out or reassign an element to another user.

SYNCHRONIZE—tells Endevor to create a sync level at a target location when the
base level of an element at a source location is not the same as the current level of
that element at the target location.

UPDATE IF PRESENT—automatically changes an ADD action to an UPDATE
action if an element currently exists in Stage 1. This option essentially allows you to
add the element to Stage 1.

WITH HISTORY—tells Endevor to preserve change history for an element when
transferring or moving that element.

3.1.9.2 Actions and the Set Options Statement

The following table indicates the action(s) for which you can code each option, and
provides notes on the use of each option.

Option Actions Notes

BYPASS DELETE
PROCESSOR

TRANSFER Cannot be used with BYPASS ELEMENT DELETE.

Cannot be used for transfer from external data set to Endevor.

3-12 SCL Reference Guide

3.1 Set Statements

Option Actions Notes

BYPASS ELEMENT
DELETE

ARCHIVE,
MOVE,
TRANSFER

Cannot be used with BYPASS DELETE PROCESSOR.

Cannot be used for transfer from external data set to Endevor.

BYPASS
GENERATE
PROCESSOR

ADD, RESTORE,
TRANSFER,
UPDATE

Cannot be used for transfer from Endevor to external data set.

Cannot be used with PROCESSOR GROUP EQUAL.

CCID ccid ADD, ARCHIVE,
DELETE,
GENERATE,
MOVE,
RESTORE,
RETRIEVE,
TRANSFER,
UPDATE

COMMENT comment Same as for
CCID

[COMPONENT]
BROWSE

PRINT ACM required to use [COMPONENT]. One clause (BROWSE,
CHANGE, HISTORY, SUMMARY, or MASTER) allowed per
statement.

[COMPONENT]
CHANGES

PRINT Same as [COMPONENT] BROWSE.

[COMPONENT]
HISTORY

PRINT Same as [COMPONENT] BROWSE.

[COMPONENT]
SUMMARY

PRINT Same as [COMPONENT] BROWSE.

[COMPONENT]
MASTER

PRINT Same as [COMPONENT] BROWSE.

COPYBACK GENERATE

DELETE INPUT
SOURCE

ADD, UPDATE

DETAIL REPORT LIST

EXPAND INCLUDES RETRIEVE

IGNORE
GENERATE FAILED

TRANSFER Cannot be used for transfer from external data set to Endevor.

JUMP MOVE

NEW VERSION
version number

ADD, RESTORE,
TRANSFER

Cannot be used for transfer from Endevor to external data set.

NOCC PRINT

Chapter 3. Set, Clear, and EOF Statements 3-13

3.1 Set Statements

Option Actions Notes

NOSEARCH GENERATE,
LIST, PRINT,
RETRIEVE

Cannot be used with SEARCH.

NO SIGNOUT RETRIEVE

OVERRIDE
SIGNOUT

ADD, ARCHIVE,
DELETE,
GENERATE,
RETRIEVE,
SIGNIN,
TRANSFER,
UPDATE

ONLY
COMPONENTS

DELETE

PROCESSOR
GROUP EQUAL
GROUP NAME

ADD,
GENERATE,
RESTORE,
TRANSFER,
UPDATE

Cannot be used with BYPASS GENERATE PROCESSOR.

REPLACE MEMBER COPY, LIST,
RETRIEVE

RETAIN SIGNOUT MOVE,
TRANSFER

Cannot be used with SIGNIN or SIGNOUT TO.

SEARCH GENERATE,
LIST, PRINT,
RETRIEVE

Cannot be used with NOSEARCH.

SHOW TEXT [PLUS
n LINES]

LIST

SIGNIN MOVE,
TRANSFER

Cannot be used with RETAIN SIGNOUT or SIGNOUT TO

SIGNOUT TO
USERID

MOVE, SIGNIN,
TRANSFER

Cannot be used with SIGNIN or RETAIN SIGNOUT

SYNCHRONIZE MOVE,
TRANSFER

UPDATE IF
PRESENT

ADD

WITH HISTORY MOVE,
TRANSFER

3-14 SCL Reference Guide

3.1 Set Statements

 3.1.10 Set STOPRC

The SET STOPRC statement provides a control for processing during batch execution.
Prior to executing the job stream, Endevor checks for the SET STOPRC statement. If
more than one statement has been coded, the return code entered in the last statement
found is used.

During execution, Endevor checks the Endevor return code (NDVR RC) for the
current action before proceeding with the next action.

 3.1.11 Syntax

��──SET STOprc──return code──.──��

 3.1.11.1 Syntax Rules

SET STOPRC return-code

The STOPRC statement identifies your highest acceptable return code for the current
action processing. If the Endevor return code is equal to or exceeds the return code
entered in the STOPRC statement, Endevor stops processing and the remaining actions
are not executed.

The highest Endevor return code (16) automatically terminates all processing. Endevor
return codes less than 16 (00, 04, 08, or 12) do not stop processing—unless you enter
one of those values as the return code in the STOPRC statement.

If you do not enter a STOPRC value, Endevor operates as if a STOPRC of 16 has
been coded.

 3.1.12 Set To

The SET TO statement applies to each element action that uses—but does not contain
all or part of—a TO clause, and remains in effect until Endevor encounters another
SET TO statement or a CLEAR TO statement, or when processing ends.

The exact information used from the SET TO statement depends on both the specific
action and the data you have entered in that element action statement. What you enter
in the action's TO clause overrides that particular entry in the SET TO statement. For
example, you code all Endevor location information (environment, system, subsystem,
type, and stage ID or stage number) in the SET TO statement. Then, when coding an
UPDATE statement, you enter a different subsystem. Endevor determines the TO
location by applying all SET TO information except for subsystem, which is taken
from the UPDATE statement.

Chapter 3. Set, Clear, and EOF Statements 3-15

3.1 Set Statements

The SET TO information you enter differs from action to action; see the individual
element action descriptions in Chapter 4, "Element Action Statements" to determine
the requirements for each. Remember that you cannot use a name mask with any TO
location field names.

 3.1.13 Syntax

��──SET TO─ ──┬ ┬─SYSOut── ─.──────��
 ├ ┤─C1Print───────────────────────────────────────
 ├ ┤ ──┬ ┬─FILe─── ─dd-name───────────────────────────
 │ │└ ┘─DDName─
 ├ ┤ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 │ │└ ┘ ─MEMber──member-name─

└ ┘─┤ LOCATION ├──────────────────────────────────

LOCATION:
├─ ─ENVironment──env-name─ ─SYStem──sys-name──SUBsystem──subsys-name─────�

�─ ─TYPe──type-name─ ──┬ ┬──────────────────────── ────────────────────────┤
 ├ ┤─STAge──stage-id────────
 └ ┘ ─STAge NUMber──stage-no─

 3.1.13.1 Syntax Rules

SET TO SYSOUT

SYSOUT applies to the LIST action only. Normally when you execute the LIST
action, Endevor lists the action cards in both the listing (Execution Report) and the
location you have indicated in the TO clause. If you do not enter any information in
the TO clause for the LIST action, Endevor checks the SET TO statement for
information. If the appropriate information has not been entered in the SET TO
statement or the SET TO statement indicates only SYSOUT, Endevor defaults to
SYSOUT alone.

When SYSOUT alone is selected, the action cards requested in the LIST action are
printed immediately after the LIST request, as part of the listing. You cannot perform
any editing on these action cards because they are available only in the printout. If
you have indicated another location (such as a library) in the TO clause, however, you
can access, and therefore edit, the action cards generated.

SET TO C1PRINT

C1PRINT applies to the PRINT action only. If you do not enter any information in
the TO clause for the PRINT action, Endevor checks the SET TO statement for
information. If the appropriate information has not been entered in the SET TO
statement or the SET TO statement indicates C1PRINT, Endevor defaults to C1PRINT
and prints the specified element or member in a listing.

3-16 SCL Reference Guide

3.1 Set Statements

Note: If you want to use C1PRINT, be sure you have included the appropriate JCL.
See the examples below:

■ To send your output to the queue, code the following:

//C1PRINT DD SYSOUT=�

■ To send your output to a specific file, code the following:

//C1PRINT DD DSN=filename

SET TO FILE (DDNAME) dd-name
 DSNAME dataset-name

When the TO location for the element is external to Endevor (for example, a
library, sequential file, or PDS), you can enter either a file name (or DDname) or
a data set name in the TO clause.

■ When you enter a file name (DDname), be sure that the appropriate JCL is
coded for the entry.

■ When you enter a data set name, be sure to enclose the name in quotes
(single or double) if there is a period in the name; for example, the data set
TEST.LIB must be coded as 'TEST.LIB'.

Note: You cannot code both a file name (or DDname) and a data set name. If
you do, you receive an error message. You also receive an error message if you
enter Endevor location information along with a data set name.

SET TO ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

Elements in Endevor are identified by environment, system, subsystem, type, and
stage (ID or number). Several actions require all or part of this information in the
TO clause. Whatever data you do not code in the syntax of the specific action
must be entered in the SET TO statement.

A brief definition of each identifier follows.

■ ENVIRONMENT—The functional areas within an organization. Environment
names can be up to 8 characters in length.

■ SYSTEM—The applications at a site. System names can be up to 8
characters in length.

■ SUBSYSTEM—Specific applications within a system. Subsystem name can
be up to 8 characters in length.

■ TYPE—Categories of source code. Type names can be up to 8 characters in
length.

■ STAGE—A stage in a software life cycle. You refer to stages i n SCL
statements by one of the following:

Chapter 3. Set, Clear, and EOF Statements 3-17

3.1 Set Statements

– STAGE ID—A 1-character, alphanumeric stage identifier.

– STAGE NUMBER—Either 1 or 2. Indicates the position of a stage
within the current environment.

See the User Guide for complete information about each term.

SET TO MEMBER NAME

SET TO MEMBER applies only to the LIST action. If you do not enter a
member name in the LIST action, Endevor checks the related SET TO statement
for a member name. If a member name has not been coded, the system defaults
to SYSOUT and the list is produced in the listing immediately following the
request.

Note: If this statement is used for any other action other than LIST it will be
ignored.

 3.1.14 Set Where

The SET WHERE statement applies to each element action that uses—but does
not contain all or part of—a WHERE clause, and remains in effect until the
system encounters another SET WHERE statement or a CLEAR statement, or
processing ends. The exact information used from the SET WHERE statement
depends on both the specific action and the data you have entered in that element
action statement. What you enter in the action's WHERE clause overrides that
particular entry in the SET Where statement.

SET WHERE differs from the SET BUILD, SET FROM, and SET TO statements
in that the WHERE (and consequently the SET WHERE) clause is optional. If
you do not enter WHERE information for a specific action and a SET WHERE
statement has not been coded, the system continues processing; you do not receive
an error message nor does processing terminate.

The WHERE clause is most useful when you are using a name mask, as it further
qualifies the criteria you have entered for the element(s). When you use a name
mask, the designated action is performed for only those elements matching the
WHERE criteria entered (along with any other qualifying data entered).

Each clause is explained in the following pages. See the individual element action
descriptions in Chapter 4, "Element Action Statements" to determine which
WHERE information you can enter for each request.

3-18 SCL Reference Guide

3.1 Set Statements

 3.1.15 Syntax

��──SET WHEre──¤─ ──┬ ┬────────────── ─¤──.──────────────────────────────────��
├ ┤─┤ CCID ├─────
├ ┤─┤ GENERATE ├─
├ ┤─┤ ARCHIVE ├──
├ ┤─┤ SPEC ├─────
└ ┘─┤ PRO ├──────

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

GENERATE:
├──GENerate─ ──┬ ┬─FAIled───────────── ───────────────────────────────────────┤

├ ┤─┤ DATE ├───────────
├ ┤─┤ FROM ├───────────
├ ┤─┤ THROUGH ├────────
└ ┘─┤ FROM - THROUGH ├─

ARCHIVE:
├─ ──┬ ┬─┤ DATE ├─────────── ───┤

├ ┤─┤ FROM ├───────────
├ ┤─┤ THROUGH ├────────
└ ┘─┤ FROM - THROUGH ├─

DATE:
├─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ─────────────────────────────┤
 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

FROM:
├─ ─FROm──DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ───────────────────────┤
 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

THROUGH:
├─ ──┬ ┬─THRough─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ────────────────┤
 └ ┘─THRu──── └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

SPEC:
├─ ──┬ ┬ ─TEXt─ ──┬ ┬─text-spec─────────────────────────────────── ──────────────┤
 │ ││ │┌ ┐─,───────── ┌ ┐─,─────────
 │ │└ ┘ ─(─ ───

┴─text-spec─ ──┬ ┬─AND─ ───

┴─text-spec─ ─)─

 │ │└ ┘─OR──
 └ ┘ ─ACM─ ──┬ ┬─comp-spec─────────────────────────────────── ─
 │ │┌ ┐─,───────── ┌ ┐─,─────────
 └ ┘ ─(─ ───

 ┴─comp-spec─ ──┬ ┬─AND─ ───

 ┴─comp-spec─ ─)─

 └ ┘─OR──

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────────────────┤

 └ ┘─=──

Chapter 3. Set, Clear, and EOF Statements 3-19

3.1 Set Statements

 3.1.15.1 Syntax Rules

SET WHERE CCID

The SET WHERE statement applies to each element action that uses—but does
not contain all or part of—a WHERE clause, and remains in effect until the
system encounters another SET WHERE statement or a CLEAR statement, or
processing ends. There are two forms of WHERE CCID SCL:

WHERE CCID ccid—Limits processing to only those elements that match one of
the CCIDs coded.

WHERE CCID OF ccid—Also limits the processing to those elements that
match one of the supplied CCIDs. With this SCL, however, you can indicate
where you want Endevor to look for the CCID(s):

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File's
RETRIEVE CCID field.

You can use a name mask with the CCID.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and separating
them with commas. The CCIDs may extend over multiple lines if necessary.

The examples below illustrate the two forms of WHERE CCID SCL.

Example 1: WHERE CCID EQ PROJ���

Example 2: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 3: WHERE CCID OF ALL (PROJ���)

SET WHERE GENERATE

WHERE GENERATE SCL allows you to set a generation date and, optionally,
time as a selection criterion. There are five possible forms for this clause:

■ WHERE GENERATE FAILED—Tells Endevor to list only those elements
for which the generate processor failed.

■ WHERE GENERATE DATE mm/dd/yy TIME hh:mm—Tells Endevor to
select only those elements with this generate date, and optionally, this time
stamp.

3-20 SCL Reference Guide

3.1 Set Statements

■ WHERE GENERATE FROM DATE mm/dd/yy TIME hh:mm—Tells
Endevor to select all elements with a generate date and, optionally, a time
stamp on or after the specified date and time stamps.

■ WHERE GENERATE THROUGH DATE mm/dd/yy TIME hh:mm—Tells
Endevor to select all elements with a generate date and, optionally, a time
stamp earlier than and including the specified date and time stamp.

■ WHERE GENERATE FROM DATE mm/dd/yy TIME hh:mm
THROUGH DATE mm/dd/yy TIME hh:mm—Tells Endevor to select only
those elements with a generate date, and optionally, time stamps within the
specified range.

The date(s) must be in mm/dd/yy format (leading zeros are not required). The
time(s) must be in hh:mm format. If you enter a time in this clause, you must
enter a date.

SET WHERE ARCHIVE

WHERE ARCHIVE SCL allows you to set an archive date and, optionally, time
as a selection criteria. There are four possible forms for this clause:

■ WHERE ARCHIVE DATE mm/dd/yy TIME hh:mm—Tells Endevor to
select only those elements with this archive date, and optionally, this time
stamp.

■ WHERE ARCHIVE FROM DATE mm/dd/yy TIME hh:mm—Tells
Endevor to select all elements with an archive date and, optionally, a time
stamp on or after the specified date and time stamps.

■ WHERE ARCHIVE THROUGH DATE mm/dd/yy TIME hh:mm—Tells
Endevor to select all elements with an archive date and, optionally, a time
stamp earlier than and including the specified date and time stamp.

■ WHERE ARCHIVE FROM DATE mm/dd/yy TIME hh:mm THROUGH
DATE mm/dd/yy TIME hh:mm—Tells Endevor to select only those
elements with an archive date and, optionally, a time stamp within the
specified range.

The date(s) must be in mm/dd/yy format (leading zeros are not required). The
time(s) must be in hh:mm format. If you enter a time in this clause, you must
enter a date.

SET WHERE TEXT

WHERE TEXT SCL limits a list to elements that contain (or do not contain) one
or more specified 1- to 70-character text strings. The examples below show how
you might code WHERE TEXT SCL. See The List Statement section of Chapter
4, "Element Action Statements," for an illustration of WHERE TEXT syntax.

■ This example tells Endevor to list all elements containing the text string
"WO9- LINKAGE:"

Chapter 3. Set, Clear, and EOF Statements 3-21

3.1 Set Statements

WHERE TEXT 'WO9-LINKAGE'

■ This example tells Endevor to list all elements that contain the text strings
"COPY COPY005" and "COPY COPY010" between columns 8 and 40 of the
element source:

WHERE TEXT ('COPY COPY��5' COLUMN 8 4� AND 'COPY COPY�1�' COLUMN 8 4�)

■ This example tells Endevor to list all elements that do not contain the text
string "REMARKS" between columns 8 and 15 of the element source:

WHERE TEXT DOES NOT CONTAIN 'REMARKS' COLUMN 8 15

■ This example tells Endevor to list all elements that contain either the text
string "M605SUB" or the text string "M607SUB" and do not contain the text
string "M606SUB:"

WHERE TEXT (('M6�5SUB' OR 'M6�7SUB')AND DOES NOT CONTAIN 'M6�6SUB')

Note: The WHERE TEXT EQUAL clause cannot be used with the WHERE
ACM clauses.

SET WHERE ACM

WHERE ACM SCL limits a list to component lists containing (or not
containing) the designated 1- to 10-character component name. Wildcards are
acceptable in the component name specification. See The List Statement
section of Chapter 4,

See the Set Statements section at the beginning of this chapter for complete
explanations of "Element Action Statements," for an illustration of WHERE
ACM syntax.. There are four clauses:

■ WHERE INPUT COMPONENT tells Endevor to list only input
components matching your entry. This is the default.

■ WHERE RELATED INPUT COMPONENT—tells Endevor to list only
related input components matching your entry.

■ WHERE OUTPUT COMPONENT tells Endevor to list only output
components matching your criteria.

■ WHERE RELATED OUTPUT COMPONENT—tells Endevor to list
only related output components matching your entry.

■ WHERE PROCESSOR COMPONENT tells Endevor to list only
processor components matching the criteria.

■ WHERE ALL COMPONENT tells Endevor to list for matches within
all three types of components.

Additional selection criteria for the component includes the following clauses.

■ THROUGH (THRU) comp-name—tells Endevor to list elements within
a specific range of 1- to 10-character component names. The range
begins with the component name coded in the WHERE COMPONENTS

3-22 SCL Reference Guide

3.1 Set Statements

clause, and encompasses all components up to and including the
component specified in this clause. Wildcards are acceptable in the
component name specification.

■ VERSION version—tells Endevor to list elements containing components
with a specific 1- to 99-character version number. The version number of
the component may differ from the version number of the element with
which it is associated.

■ LEVEL level tells—Endevor to list elements containing components with
a specific 0- to 99-character level number. The level number of the
component can differ from the level number of the element with which it
is associated.

■ ENVIRONMENT env name—tells Endevor to list elements with
components located in the specified environment. If you provide an
environment name, you must also provide the following information:

– SYSTEM—1 to 8 characters

– SUBSYSTEM—1 to 8 characters

– TYPE—1 to 8 characters

– STAGE NUMBER—either 1 or 2

■ FILE (DDNAME) ddname—tells Endevor to list elements whose:

– Input components originated from the specified DDname

– Output components were written to the specified DDname

– Components were produced by a processor step specified by and
associated with the designated DDname

■ DSNAME data set name—tells Endevor to list elements whose:

– Input components originated from the specified data set

– Output components were written to the specified data set

– Components were produced by a processor step specified by and
associated with the designated data set

WHERE ACM comp spec {AND/OR} comp spec

This clause allows you to provide compound component selection criteria,
using the same options as described above.

Note: The WHERE ACM clauses cannot be used with the WHERE TEXT
clause.

WHERE PROCESSOR GROUP

WHERE PROCESSOR GROUP SCL allows you to select elements according
to a specified processor group. You can use a name mask when specifying
the processor group name.

Chapter 3. Set, Clear, and EOF Statements 3-23

3.1 Set Statements

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

3-24 SCL Reference Guide

3.2 Clear Statements

 3.2 Clear Statements

 3.2.1 Overview

A CLEAR statement clears the information that has been designated by a SET
statement. The CLEAR statement must be in the same syntax as the SET
statement to which it applies, and must be entered (at some point in your
code) after that SET statement. The CLEAR statement affects all syntax
following it until a new SET statement is encountered or processing ends.
The CLEAR statement does not affect the related information coded within
each individual element action's syntax. Because these statements are not
executed, no source or output management is involved.

 3.2.2 Clear Build

The CLEAR BUILD statement clears like information you have entered in the
SET BUILD statement.

 3.2.3 Syntax

��──CLEar BUIld──¤─ ──┬ ┬──────────────── ─¤──.──────────────────��
 ├ ┤─ALL────────────
 ├ ┤─ACTion─────────
 ├ ┤─LEVel──────────
 └ ┘─WITh COMPonent─

 3.2.3.1 Syntax Rules

CLEAR BUILD

You can code the following options in the CLEAR BUILD statement.

ALL—Clears every selection designated in the related SET BUILD
clause—action, level, and WITH COMPONENTS (if applicable).

ACTION—Clears the related SET BUILD ACTION clause, no matter which
action is coded in that clause.

LEVEL—Clears the level selection designated in the related SET BUILD
LEVEL clause.

WITH COMPONENTS—Clears the related SET BUILD WITH
COMPONENTS clause.

Chapter 3. Set, Clear, and EOF Statements 3-25

3.2 Clear Statements

Note: WITH COMPONENTS pertains to the Endevor ACM product only.
See the Set Build section in this chapter, and The List Statement (BUILD
clause) in Chapter 4, "Element Action Statements," for additional information.

 3.2.4 Clear To/From

The CLEAR TO and CLEAR FROM statements clear information from
previously coded SET TO and SET FROM statements.

 3.2.5 Syntax

��──CLEar─ ──┬ ┬─TO─── ─¤─ ──┬ ┬───────────── ─¤──.─────────────────��
 └ ┘─FROm─ ├ ┤──┬ ┬─FILe─── ─
 │ │└ ┘─DDName─
 ├ ┤─DSName──────
 ├ ┤─MEMber──────
 ├ ┤─ALL─────────
 ├ ┤─SITe────────
 ├ ┤─ENVironment─
 ├ ┤─SYStem──────
 ├ ┤─SUBsystem───
 ├ ┤─TYPe────────
 └ ┘─STAge───────

 3.2.5.1 Syntax Rules

CLEAR/TO FROM

You can enter the following values in the CLEAR TO and CLEAR FROM
statements:

FILE/DDNAME—Clears the related SET TO/FROM FILE (DDNAME)
clause.

DSNAME—Clears the related SET TO/FROM DSNAME clause.

MEMBER—Clears the related SET TO/FROM MEMBER clause.

ALL—Clears all clauses entered for the related SET statement(s).

SITE—Clears the related SET FROM SITE (site ID) clause.

ENVIRONMENT—Clears the related SET TO/FROM ENVIRONMENT
clause.

SYSTEM—Clears the related SET TO/FROM SYSTEM clause.

SUBSYSTEM—Clears the related SET TO/FROM SUBSYSTEM clause.

3-26 SCL Reference Guide

3.2 Clear Statements

TYPE—Clears the related SET TO/FROM TYPE clause.

STAGE—Clears the related SET TO/FROM STAGE (ID) or SET TO/FROM
STAGE NUMBER clause(s).

 3.2.6 Clear Options

The CLEAR OPTIONS statement clears any "matching" SET OPTIONS
statement coded previously.

 3.2.7 Syntax

��──CLEar OPTion──¤─ ──┬ ┬─── ─¤────�
 ├ ┤─ALL─────────────────────────────────────
 ├ ┤─CCId──ccid──────────────────────────────
 ├ ┤─COMment──comment────────────────────────
 ├ ┤─COPyback────────────────────────────────

├ ┤─DELete input source─────────────────────
 ├ ┤─DETail report───────────────────────────
 ├ ┤─EXPand includes─────────────────────────

├ ┤─IGNore generate failed──────────────────
 ├ ┤─JUMp────────────────────────────────────
 ├ ┤─NEW VERsion──version────────────────────
 ├ ┤─NOCc────────────────────────────────────
 ├ ┤─NO SIGNOut──────────────────────────────
 ├ ┤─OVErride SIGNOut────────────────────────
 ├ ┤─ONLy COMPonent──────────────────────────
 ├ ┤─REPlace MEMber──────────────────────────
 ├ ┤ ─SHOw TEXt─ ──┬ ┬────────────── ────────────
 │ │└ ┘──PLUs n lines
 ├ ┤─SYNchronize─────────────────────────────

├ ┤─UPDate if present───────────────────────
 ├ ┤─WITh HIStory────────────────────────────

├ ┤──┬ ┬─BYPass DELete PROcessor─ ────────────
│ │└ ┘─BYPass ELEment DELete───
├ ┤──┬ ┬─BYPass GENerate PROcessor───────────

 │ │└ ┘ ─PROcessor GROup─ ──┬ ┬─EQ─ ─group name─
 │ │└ ┘─=──
 ├ ┤ ─COMponent─ ──┬ ┬─BROwse── ─────────────────
 │ │├ ┤─CHAnge──
 │ │├ ┤─HIStory─
 │ │├ ┤─SUMmary─
 │ │└ ┘─MASter──
 ├ ┤──┬ ┬─NOSearch─ ───────────────────────────
 │ │└ ┘─SEArch───
 └ ┘──┬ ┬─RETain SIGNOut───── ─────────────────
 ├ ┤─SIGNin─────────────
 └ ┘ ─SIGNOut TO──userid─

�──.──��

Chapter 3. Set, Clear, and EOF Statements 3-27

3.2 Clear Statements

 3.2.7.1 Syntax Rules

CLEAR OPTIONS

Specify a particular option(s) in a CLEAR OPTIONS clause to clear only that
option(s). Specify ALL to clear all options previously set. See the section,
Set Options, for a description of each option.

 3.2.8 Clear Where

The CLEAR WHERE statement clears all related SET WHERE clauses coded
previously.

 3.2.9 Syntax

��──CLEar WHEre──¤─ ──┬ ┬───────────────── ─¤──.─────────────────��
 ├ ┤─ALL─────────────
 ├ ┤─TEXt────────────
 ├ ┤─CCId────────────
 ├ ┤─GENerate FAIled─
 ├ ┤─GENerate DATe───
 ├ ┤─ARChive DATe────
 └ ┘─ACM─────────────

 3.2.9.1 Syntax Rules

CLEAR WHERE

You can enter the following values in the CLEAR WHERE statement:

ALL—Clears all SET WHERE statements previously coded.

TEXT—Clears the related SET WHERE TEXT EQUALS clause.

CCID—Clears the related SET WHERE CCID clause.

GENERATE FAILED—Clears the related SET WHERE GENERATE
FAILED clause.

GENERATE DATE—Clears the related SET WHERE GENERATE DATE
(and GENERATE TIME) clause.

ARCHIVE DATE—Clears the related SET WHERE ARCHIVE DATE (and
ARCHIVE TIME) clause.

ACM—Clears all information coded in relation to the SET WHERE
COMPONENTS EQUAL clause, including:

3-28 SCL Reference Guide

3.2 Clear Statements

■ Type of component (input, output, processor, all).

■ THROUGH, VERSION, LEVEL in a WHERE COMPONENTS EQUAL
clause.

■ Component inventory location (environment, system, subsystem, type, and
stage number).

■ File (DDname) or data set name.

Chapter 3. Set, Clear, and EOF Statements 3-29

3.3 EOF (EOJ) Statement

3.3 EOF (EOJ) Statement

 3.3.1 Overview

The EOF (EOJ) statement tells Endevor to stop parsing the SCL syntax at a
particular point. For example, if you have listed two actions and want to
perform only the first action, you would enter EOF. (or EOJ.) immediately
after the last line of the first action (or immediately before the first line of the
second action).

If you do not use the EOF (EOJ) statement, you need to manually delete the
actions (lines of code) you do not want performed.

 3.3.2 Syntax

��─ ──┬ ┬─EOF─ ─.──��
 └ ┘─EOJ─

 3.3.2.1 Syntax Rules

EOF (EOJ)

Simply code either EOF or EOJ in the appropriate place in the syntax.

3-30 SCL Reference Guide

Chapter 4. Element Action Statements

This chapter illustrates the syntax for each Endevor element action, and
explains the coding rules specific to that statement.

Chapter 4. Element Action Statements 4-1

4.1 Coding Conventions

 4.1 Coding Conventions

Most of the actions for which you can code SCL can also be accessed in
foreground or batch mode. A discussion of the processing flow for these
actions can be found in the User Guide: refer to that as necessary.

A strict coding order applies to the THROUGH, VERSION, and LEVEL
clauses, as follows:

■ When coding the THROUGH clause, it must immediately follow the
initial action clause. If you enter a THROUGH clause, however, you
cannot specify a level for the action.

■ When coding the VERSION clause, it must immediately follow the
THROUGH clause. If a THROUGH clause has not been entered, the
VERSION clause must immediately follow the initial action clause.

■ When coding the LEVEL clause, it must immediately follow the
VERSION clause. If a VERSION clause has not been entered, the
LEVEL clause must immediately follow the initial action clause. If you
specify a LEVEL, however, you cannot enter a THROUGH clause for the
action.

All other clauses (following THROUGH, VERSION, and/or LEVEL) can be
coded in any order.

Note: You can enter VERSION and LEVEL for the following actions,
although this is not indicated in the syntax: ADD, ARCHIVE, GENERATE,
MOVE, RESTORE, SIGNIN, TRANSFER, and UPDATE. However, these
fields are ignored during processing.

4-2 SCL Reference Guide

4.2 SCL Execution JCL

4.2 SCL Execution JCL

 4.2.1 Overview

As mentioned previously in this manual, you can use batch panels to enter
your element action requests. The standard JCL required for execution is
already defined. You most likely do not need to code additional JCL, except
in special situations (for example, when you reference a file by DDname).

If you decide not to use the batch panels, you must code specific JCL in order
to execute your requests. A sample of the JCL required is provided on the
installation tape and loaded to the JCL library (iprfx.iqual.JCL) during
installation. The sample JCL is shown below:

//� (COPY JOBCARD)

//���

//� �

//� BC1JSCL JCL TO EXECUTE ENDEVOR SCL REQUESTS. �

//� �

//� PLEASE CONSULT YOUR ENDEVOR SCL REFERENCE MANUAL FOR A �

//� DESCRIPTION OF SELECTION CRITERIA. �

//� �

//���

//REPORTS EXEC PGM=NDVRC1,DYNAMNBR=15��,PARM='C1BM3���',REGION=4�96K

//�STEPLIB DD DSN=SYS2.PANVALET.LOAD,DISP=SHR PANVALET LOADLIB

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//BSTIPT�1 DD �

��� PUT SCL STATEMENTS HERE ���

//C1MSGS1 DD SYSOUT=� MESSAGE OUTPUT

//C1PRINT DD SYSOUT=� PRINT ACTION FILE

//SYSOUT DD SYSOUT=�

Chapter 4. Element Action Statements 4-3

4.2 SCL Execution JCL

4.3 The &&ACTION Statement

 4.3.1 Overview

The &&ACTION statement allows you to substitute any action for a specified
element at run time. This statement normally is generated when you use the
LIST action.

If you do not indicate a specific action(s) to be performed when you request a
list, &&ACTION appears at the beginning of each clause. You can then
input the appropriate action(s) at a later date, using the SET ACTION
statement.

For example, at the beginning of a month, you may want to see a list of
elements involved with a particular project, although you may not know what
actions you will request for those elements. If you request the list without
indicating any specific actions, &&ACTION appears, in lieu of a specific
action, for every action card generated. When you are ready to perform
individual actions, simply specify those actions with the necessary SET
ACTION clause(s).

Whenever you execute an &&ACTION statement, you must precede it with a
SET ACTION statement that contains the action to be performed. Depending
on the action specified, you may need to include supplementary information,
such as TO or FROM clauses, in the related SET ACTION statement. See
the discussions of the SET ACTION statements in Chapter 3, "Set, Clear, and
EOF Statements," and in The List Statement section in this chapter for more
information.

Note: Additional clauses may be required depending on the action coded in
the SET ACTION statement. Similarly, additional optional clauses will be
available depending on the action you use. See the individual action
descriptions for detailed information regarding each action's requirements and
options.

 4.3.2 Syntax

��─ ─&&Action ELEment─ ──┬ ┬─element───── ─────────────────────────�
 └ ┘─member-name─

�─ ──┬ ┬─THRough─ ─element name─ ──┬ ┬───────── ──┬ ┬───────── ────────�
 └ ┘─THRu──── └ ┘─VERsion─ └ ┘─version─

�─ ──┬ ┬─────── ──┬ ┬──────── ─────────────────────────────────────��
 └ ┘─LEVel─ └ ┘─level.─

4-4 SCL Reference Guide

4.3 The &&ACTION Statement

 4.3.2.1 Syntax Rules

&&ACTION ELEMENTS element
 member-name

Indicates the element(s) involved when the designated action is performed.
Code the required syntax and enter the appropriate element name; up to 10
characters are allowed. In addition, you can use a name mask with the
element name. If you specify a level (in the LEVEL clause), however, you
cannot use a name mask with the element name.

THROUGH (THRU) element-name

Indicates the range of elements affected by the &&ACTION statement. You
can use a name mask with the element name. You cannot have both a
THROUGH clause and a LEVEL clause.

VERSION version

Indicates the version you want to see for the specified element. Acceptable
values are 1-99.

You must code a full element name if you want to indicate a version number.

If you code the VERSION clause, it must follow the THROUGH clause.

LEVEL level

Indicates the level you want to see for the specified element. Acceptable
values are 00-99. By default, Endevor retrieves the current level of the
element.

If you enter a LEVEL clause, you cannot enter a THROUGH clause. In
addition, you must code a full element name in the &&ACTION ELEMENTS
clause.

The LEVEL option is not available for all actions. Check the individual
action to see if this clause can be used.

Chapter 4. Element Action Statements 4-5

4.3 The &&ACTION Statement

4.3.3 Example of &&ACTION SCL

The following is an example of &&ACTION SCL. In this example, the SET
ACTION GENERATE statement has been specified, as well the appropriate
SET OPTIONS and SET FROM statements.

SET ACTION GENERATE .

SET FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1 .

SET OPTIONS CCID REQ#43�23

COMMENT 'REGENERATE WITH NEW COPY BOOKS'

 COPYBACK

 SEARCH .

&&ACTION ELEMENTS PAYRPT� .

4-6 SCL Reference Guide

4.3 The &&ACTION Statement

4.4 The Add Statement

 4.4.1 Overview

The ADD statement allows you to add an element to Stage 1 in Endevor.

 4.4.2 Add Syntax

��──ADD ELEment──element-name─ ──┬ ┬─────────────────────────── ──────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─FROm─ ──┬ ┬──┬ ┬─FILe─── ─dd-name─────────────────────────── ─TO─────────�
 │ │└ ┘─DDName─
 ├ ┤ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 │ │└ ┘ ─MEMber──member-name─
 └ ┘─PATH──hfspath──HFSFILE──filename──────────────

�─ ─ENVironment──env-name─ ─SYStem──sys-name──SUBsystem──subsys-name─────�

�──TYPe──type-name───�

�─ ──┬ ┬── ───�
 └ ┘ ─OPTion──¤─ ──┬ ┬── ─¤─
 ├ ┤─CCId──ccid─────────────────────────────────
 ├ ┤─COMment──comment───────────────────────────
 ├ ┤─NEW VERsion──version───────────────────────

├ ┤─UPDate if present──────────────────────────
├ ┤─DELete input source────────────────────────

 ├ ┤─OVErride SIGNOut───────────────────────────
└ ┘──┬ ┬─BYPass GENerate PROcessor──────────────

 └ ┘ ─PROcessor GROup─ ──┬ ┬─EQual─ ─group name─
 └ ┘─=─────

�──.──��

 4.4.2.1 Syntax Rules

ADD ELEMENTS element-name

Indicates the element(s) to be added. Code the required syntax and enter the
appropriate element name; up to 10 characters are allowed. In addition, you
can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be added, beginning with the
element coded in the ADD ELEMENTS statement, up to and including the
element specified in this statement. You can use a name mask with the
element name. If you use the THROUGH clause, however, you cannot enter
a member name in the FROM clause.

Note: If you are working with a sequential file, the THROUGH clause is
ignored.

Chapter 4. Element Action Statements 4-7

4.4 The Add Statement

FROM FILE (DDNAME) dd-name
 DSNAME dataset-name
 MEMBER member-name

 PATH hfspath
 HFSFILE filename

The FROM clause indicates the location of the element being added. Endevor
uses both the FROM clause in the action and any preceding SET FROM
clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

The SET FROM statement allows you to specify only a file (DDname) or
data set name, not a member name.

You must enter a FILE, DDNAME, DSNAME, or PATH in conjunction with
HFSFILE (enter one and only one). If you enter either a FILE or DDNAME,
be sure the appropriate JCL DD statement is coded.

Enter a member name (up to 10 characters) if it differs from the element
name specified in the ADD ELEMENTS clause. If you do not enter a
member name, Endevor assumes that the element name and member name are
the same. If you provide a member name:

■ The ADD ELEMENTS clause must contain a fully qualified element
name.

■ You cannot also code a THROUGH clause.

PATH

The HFS directory where the element source file resides.

HFSFILE

The file in the HFS directory that you want to put under the control of
Endevor.

For more information see 1.6.1, “HFSFile Syntax Rules” on page 1-21.1.6.1,
“HFSFile Syntax Rules” on page 1-21.

4-8 SCL Reference Guide

4.4 The Add Statement

TO ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name

The TO clause indicates where the element is being added. Endevor uses
both the TO clause in the action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

You must specify an environment, system, subsystem, and type for the ADD
action. Remember that you cannot use a name mask with any field in the TO
location.

OPTIONS

OPTION clauses allow you to further specify action requests.

CCID ccid/COMMENT comment—You can enter a 1- to 12-character CCID
and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the ADD action fails.

When you specify a CCID and/or comment in an ADD action, Endevor treats
the CCID and/or COMMENT fields differently depending on whether you are
adding a new element or an existing element.

■ When you specify a CCID and/or comment in an ADD action for a new
element, Endevor uses this CCID and/or comment to:

– Set the source and source delta CCID and/or COMMENT fields.

– Set the generate and component list delta CCID and/or COMMENT
fields if the generate processor is run.

– Set the last action CCID and/or COMMENT fields.

Endevor also clears the Stage 1 RETRIEVE CCID and/or COMMENT fields
when you add a new element.

■ When you specify a CCID and/or comment in an ADD action for an
existing element, Endevor uses this CCID and/or comment to:

– Set the source CCID and/or COMMENT fields if the CCID and/or
comment has changed.

Chapter 4. Element Action Statements 4-9

4.4 The Add Statement

– Set the source delta CCID and/or COMMENT fields.

– Set the generate CCID and/or COMMENT fields if the generate
proc&essor is run.

– Set the component list delta CCID and/or COMMENT fields if
running the generate processor creates a change.

– Set the last action CCID and/or COMMENT fields.

Endevor also clears the Stage 1 RETRIEVE CCID and/or COMMENT fields
when you add an existing element. If you use the BYPASS GENERATE
PROCESSOR option, the ADD action does not set the generate or component
list delta CCID and/or COMMENT fields.

NEW VERSION version—If the element exists up the map, the version
number associated with the existing element will be assigned, by default. If
the element does not exist up the map, the element is assigned version 1.

UPDATE IF PRESENT—To successfully add an element to Endevor, that
element cannot currently exist in Stage 1. If the element is present in Stage
1, Endevor returns an error message. The UPDATE IF PRESENT option,
however, allows you to add the element even if it is in Stage 1, by
automatically changing the ADD action to UPDATE.

DELETE INPUT SOURCE—After an element has been successfully added
to Endevor, you can use this option to remove the member from the library in
which it originated.

If you input a sequential file, this option deletes that file.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option to perform this action. This
option updates the signout ID at the appropriate stage, with the user ID of the
person performing the override. Use OVERRIDE SIGNOUT with caution to
avoid regressing changes made by another user.

BYPASS GENERATE PROCESSOR—Use this option if you do not want
the generate processor executed for the element. Otherwise, as part of normal
processing, Endevor looks for and executes the generate processor for the
element when it is added.

PROCESSOR GROUP EQ/= group name—You can specify that a
particular processor group be used for this action. If you do not indicate a
processor group and:

■ You are adding a new member, the system defaults to the processor
group associated with the type to which the element is assigned.

■ You are adding an existing element, the system defaults to the processor
group last used for this element.

4-10 SCL Reference Guide

4.4 The Add Statement

4.4.3 Example of Add SCL

The following is an example of ADD SCL. This SCL adds a new element to
the Payroll reporting subsystem in the environment PROD. After the ADD
action completes, the source member will be deleted.

ADD ELEMENT 'PAYRPT31'

TO ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

TYPE ' COBOL'

FROM DSNAME 'PAYROLL.SRCLIB'

OPTIONS DELETE INPUT SOURCE

 CCID REQ#43213

COMMENT 'ADD THE NEW PAYROLL REPORTING PROGRAM' .

Chapter 4. Element Action Statements 4-11

4.4 The Add Statement

4.5 The Archive Statement

 4.5.1 Overview

The ARCHIVE statement writes the base level and all change levels of an
element to a sequential file (known as an archive data set). In addition, for
Endevor ACM users, the ARCHIVE action writes the base level and all
change levels of the Component List to the archive data set.

Use the ARCHIVE action to:

■ Maintain a backup copy of the element source.

■ Delete the existing version of a particular element from Stage 2.

■ Maintain an archive version of the element source, that is, to maintain a
version of the element source outside of Endevor.

Archive is available in batch only. Once an element has been archived,
COPY, LIST, RESTORE, and TRANSFER actions can be executed against
the archive data set.

 4.5.2 Syntax

4-12 SCL Reference Guide

4.5 The Archive Statement

��──ARChive ELEment──element-name──────────────────────────────�

�─ ──┬ ┬─────────────────────────── ─FROm─────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─ENVironment──env-name──SYStem──sys-name─────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─TO─ ──┬ ┬─FILe─── ─dd-name─────────�
 └ ┘ ─STAge NUMber──stage-no─ └ ┘─DDName─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.─────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬─────────────────────── ─¤─
 ├ ┤─CCId──ccid────────────
 ├ ┤─COMment──comment──────
 ├ ┤─OVErride SIGNOut──────

└ ┘─BYPass ELEment DELete─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────┤

 └ ┘─=──

 4.5.2.1 Syntax Rules

ARCHIVE ELEMENTS element-name

Indicates the element(s) to be archived. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name.

Chapter 4. Element Action Statements 4-13

4.5 The Archive Statement

THROUGH (THRU) element-name

Indicates that a range of elements should be archived, beginning with the
element coded in the ARCHIVE ELEMENTS statement, up to and including
the element specified in this statement. You can use a name mask with the
element name.

FROM ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being archived.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

TO FILE (DDNAME) dd-name

The TO clause indicates where the element is being archived. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

The DCB must specify variable blocked records (RECFM=VB), a minimum
LRECL of 2970, DSORG=PS, and a block size greater than 2974. When
archiving to tape, the recommended block size is 32,000.

4-14 SCL Reference Guide

4.5 The Archive Statement

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP EQ/= group name—This clause allows
you to select elements according to a specified processor group. You can use
a name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

Chapter 4. Element Action Statements 4-15

4.5 The Archive Statement

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

OPTIONS

OPTIONS clauses allow you to further specify requests.

CCID ccid/COMMENTcomment—You can enter a 1- to 12- character CCID
and/or a 1- to 40-character comment.

CCIDS and/or comments may be required. If you do not provide a required
CCID and/or comment, the ARCHIVE action fails.

This is the CCID that Endevor looks for if WHERE ARCHIVE CCID is
specified for the LIST, COPY, RESTORE, and TRANSFER actions.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.
Note, however, that OVERRIDE SIGNOUT does not apply when you select
the BYPASS ELEMENT DELETE option for this action. This option updates
the SIGNOUT ID at the appropriate stage with the user ID of the person
performing the override. Use OVERRIDE SIGNOUT with caution to avoid
regressing changes made by another user.

BYPASS ELEMENT DELETE—Use this option if you do not want the
element automatically deleted (the default) after it is archived. Otherwise,
Endevor deletes the element, that is, the base and all change levels.

4-16 SCL Reference Guide

4.5 The Archive Statement

4.5.3 Example of Archive SCL

The following is an example of ARCHIVE SCL. This SCL archives all of
the elements from the Payroll Reporting subsystem. The archived elements
will be written to the preallocated DD name "ARCHOUT.' The signout status
will be overridden, if necessary.

ARCHIVE ELEMENT '�'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

TO DDNAME ARCHOUT

OPTIONS CCID REQ#44145

COMMENT 'ARCHIVE REPORTING SUBSYSTEM PROGRAMS'

OVERRIDE SIGNOUT .

Chapter 4. Element Action Statements 4-17

4.5 The Archive Statement

4.6 The Copy Statement

 4.6.1 Overview

The COPY statement copies an element from an archive data set to a user
data set (that is, a data set external to Endevor). The user data set can be a
library (a CA-Panvalet file, a CA-Librarian file, or a PDS) or a sequential file.
The element is not restored to the Master Control File.

The COPY action is available in batch only. Note, also, that copy processing
is strictly external to Endevor.

 4.6.2 Syntax

4-18 SCL Reference Guide

4.6 The Copy Statement

��──COPy ELEment──element-name─────────────────────────────────�

�─ ──┬ ┬─────────────────────────── ──┬ ┬────────────────── ────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─ └ ┘ ─VERsion──version─
 └ ┘─THRu────

�──FROm─ ──┬ ┬─FILe─── ─dd-name─ ──┬ ┬─────────────── ───────────────�
 └ ┘─DDName─ └ ┘ ─SITe──site-id─

�─ ─ENVironment──env-name──SYStem──sys-name─────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────�

�──STAge NUMber──stage-no──TO──────────────────────────────────�

�─ ──┬ ┬ ──┬ ┬─FILe─── ─dd-name─────────────────────────── ──────────�
 │ │└ ┘─DDName─
 ├ ┤ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 │ │└ ┘ ─MEMber──member-name─
 └ ┘─PATH──hfspath──HFSFILE──filename──────────────

�─ ──┬ ┬─── ──────────�
 └ ┘ ─WHERE──¤─ ──┬ ┬────────────────────────────── ─¤─
 │ │┌ ┐─,────
 ├ ┤ ─CCId─ ──┬ ┬─EQ─ ─(─ ───

┴─ccid─ ─)─

 │ │└ ┘─=──
 └ ┘ ─ARChive─ ──┬ ┬─┤ DATE ├──── ────

├ ┤─┤ FROM ├────
└ ┘─┤ THROUGH ├─

�─ ──┬ ┬───────────────────────────── ─.─────────────────────────��
 └ ┘ ─OPTions─ ──┬ ┬────────────────
 └ ┘─REPlace member─

DATE:
├─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ─────────────────┤
 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

FROM:
├─ ─FROm──DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ───────────┤
 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

THROUGH:
├─ ──┬ ┬─THRough─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ────┤
 └ ┘─THRu──── └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

 4.6.2.1 Syntax Rules

COPY ELEMENTS element-name

Indicates the element(s) you want to copy. Code the required syntax and
enter the appropriate element name; up to 10 characters are allowed. In
addition, you can use a name mask with the element name.

THROUGH (THRU) element-name

Chapter 4. Element Action Statements 4-19

4.6 The Copy Statement

Indicates that you want to copy a range of elements, beginning with the
element coded in the COPY ELEMENTS statement, up to and including the
element specified in this statement. You can use a name mask with the
element name. If you enter the THROUGH clause, however, you cannot
enter a member name (in the TO clause).

VERSION version

Indicates the version of the element you want to copy. Acceptable values are
1-99.

You must code a full element name if you want to indicate a version number.

If you code the VERSION clause, it must follow the THROUGH clause.

FROM FILE (DDNAME) dd-name
 ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being copied.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

The FILE (DDNAME) portion of the clause is required. The file name
indicates from which archive file the element is being copied. Enter this
information first when coding the syntax.

4-20 SCL Reference Guide

4.6 The Copy Statement

You must specify an environment, system, subsystem, type, and stage number
(either 1 or 2). The environment name must be explicit. You can use a name
mask with the system, subsystem, type, and stage.

Entering a site ID is optional. This field further defines the location of the
element being copied.

TO FILE (DDNAME) dd-name
 DSNAME dataset-name
 MEMBER member-name

The TO clause indicates the file or data set name to which the element is
being copied. Endevor uses both the TO clause in an action and any
preceding SET TO clause to determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set, Clear, and
EOF Statements," for more information.

You must enter either a FILE, a DDNAME, or a DSNAME (enter one and
only one). If you enter a FILE or DDNAME, be sure the appropriate JCL is
coded.

Enter a member name (up to 10 characters) if it differs from the element
name specified in the COPY ELEMENTS clause. Remember that you cannot
use a name mask with a TO field name.

If you do not enter a member name, Endevor assumes that the element name
and member name are the same.

■ You can enter a member name only if a full element name has been
coded in the COPY ELEMENTS clause; that is, if you have not used a
name mask.

■ If you want to code a member name, you must do so in the COPY
statement; the SET TO MEMBER clause does not apply to the COPY
action. If you do enter a member name, you cannot use the THROUGH
clause.

Chapter 4. Element Action Statements 4-21

4.6 The Copy Statement

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID EQ/= ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID EQ PROJ��V

Example 2: WHERE CCID (PROJ��1, PROJ��2, PROJ��4)

WHERE ARCHIVE—This clause allows you to select elements based on the
date and, optionally, time that an element was archived. There are four
possible forms for this clause:

WHERE ARCHIVE DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to copy only those elements with this date, and
optionally, time stamp.

WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to copy all elements with a date and, optionally,
time stamp on or after the specified date and time stamps.

WHERE ARCHIVE THROUGH DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to copy all elements with a date and, optionally,
time stamp earlier than and including the specified date and time stamp.

4-22 SCL Reference Guide

4.6 The Copy Statement

WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm] TH
ROUGH DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to copy only those elements with a date, and
optionally, time stamps within the specified range. If you enter a time, you
must enter the date with it.

OPTIONS REPLACE MEMBER

If the element you are copying exists in the target location, Endevor rejects
the request unless you code the REPLACE MEMBER option. Specify this
option when you want to replace the existing member in the library.

4.6.3 Example of Copy Action SCL

The following is an example of the COPY action. This SCL copies the
archived version of Payroll program "PAYRPT43" to a user data set. The
input is taken from a DDname that refers to a data set that was created with
the ARCHIVE action.

COPY ELEMENT 'PAYRPT43'

FROM DDNAME ARCHIVE

 ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

TO DSNAME 'PAYROLL.SRCLIB' MEMBER 'PAYRPT43'

OPTIONS REPLACE MEMBER .

Chapter 4. Element Action Statements 4-23

4.6 The Copy Statement

4.7 The Delete Statement

 4.7.1 Overview

The DELETE statement deletes an element from the specified inventory
location.

 4.7.2 Syntax

��──DELete ELEment──element-name───────────────────────────────�

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─FROm─ ─ENVironment──env-name──SYStem──sys-name───────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─────────────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬──────────────────────────────────── ─.──────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬────────────────── ─¤─
 ├ ┤─CCId──ccid───────
 ├ ┤ ─COMment──comment─
 ├ ┤─ONLy COMPonent───
 └ ┘─OVErride SIGNOut─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────┤

 └ ┘─=──

4-24 SCL Reference Guide

4.7 The Delete Statement

 4.7.2.1 Syntax Rules

DELETE ELEMENTS element-name

Indicates the element(s) to be deleted. Code the required syntax and enter the
appropriate element name; up to 10 characters are allowed. In addition, you
can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be deleted, beginning with the
element coded in the DELETE ELEMENTS statement, up to and including
the element specified in this statement. You can use a name mask with the
element name.

FROM ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being deleted.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

Chapter 4. Element Action Statements 4-25

4.7 The Delete Statement

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP EQ/= group name—This clause allows
you to select elements according to a specified processor group. You can use
a name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

4-26 SCL Reference Guide

4.7 The Delete Statement

OPTIONS

OPTIONS clauses allow you to further specify action requests.

CCID ccid/COMMENT comment—You can enter a 1- to 12- character
CCID and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the DELETE action fails.

ONLY COMPONENTS—Applicable for Endevor ACM users only.
Indicates whether you want to delete both the element component list and the
element, or the element component list only. Y (yes—delete just the element
component list) or N (no—delete the element as well as the element
component list).

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.
This option updates the SIGNOUT ID at the appropriate stage with the user
ID of the person performing the override. Use OVERRIDE SIGNOUT with
caution to avoid regressing changes made by another user.

4.7.3 Example of Delete Action SCL

The following is an example of DELETE SCL. This SCL deletes an element
from Stage 1. The signout will be overridden, if necessary.

DELETE ELEMENT 'PAYRPT�3'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 2

OPTIONS CCID REQ#43�34

COMMENT 'DELETE AN OBSOLETE PAYROLL PROGRAM'

OVERRIDE SIGNOUT .

Chapter 4. Element Action Statements 4-27

4.7 The Delete Statement

4.8 The Generate Statement

 4.8.1 Overview

The GENERATE statement executes the generate processor for the current
level of an element, in either Stage 1 or Stage 2.

 4.8.2 Syntax

��──GENerate ELEment──element-name─ ──┬ ┬─────────────────────────── ─FROm─────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─ENVironment──env-name─ ─SYStem──sys-name──SUBsystem──subsys-name──────────────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge──stage-id──────── ─────────────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬─────────────────────────── ───�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬───────────────────────────────────── ─¤─
 ├ ┤─CCId──ccid──────────────────────────
 ├ ┤─COMment──comment────────────────────
 ├ ┤─OVErride SIGNOut────────────────────
 │ │┌ ┐─SEArch───
 ├ ┤ ─COPyback─ ──┴ ┴─NOSearch─ ─────────────
 └ ┘ ─PROcessor GROup─ ──┬ ┬─EQ─ ─group name─
 └ ┘─=──

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)────────────────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────

 └ ┘─RETrieve─

PRO:
├──PROcessor GROup─ ──┬ ┬─EQ─ ───┤
 └ ┘─=──

 4.8.2.1 Syntax Rules

GENERATE ELEMENTS element-name

Indicates the element(s) to be generated. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name .

THROUGH (THRU) element-name

Indicates that a range of elements should be generated, beginning with the
element coded in the GENERATE ELEMENTS statement, up to and
including the element specified in this statement. You can use a name mask
with the element name.

4-28 SCL Reference Guide

4.8 The Generate Statement

FROM ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being generated.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

If you use a name mask, Endevor begins searching for the specified
element(s) in Stage 1 of the current environment, and generates the first
element that matches the specified element name, regardless of its location,
version or level.

Chapter 4. Element Action Statements 4-29

4.8 The Generate Statement

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control
File's RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP EQ/= group name— This clause allows
you to select elements according to a specified processor group. You can use
a name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

4-30 SCL Reference Guide

4.8 The Generate Statement

OPTIONS

OPTIONS clauses allow to further specify an action request.

CCID ccid/COMMENT comment— You can enter a 1- to 12- character
CCID and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the GENERATE action fails.

When you specify a CCID and/or comment in a GENERATE action, Endevor
updates the CCID and/or COMMENT fields differently, depending on
whether you specify the GENERATE action with or without the COPYBACK
option.

When you specify a CCID and/or comment in a GENERATE action without
the COPYBACK option, Endevor uses this CCID and/or comment to:

■ Set the generate CCID and/or COMMENT fields.

■ Set the last action CCID and/or COMMENT fields.

■ Set the component list delta CCID and/or COMMENT fields if running
the generate processor creates a change.

When you specify a CCID and/or comment in a GENERATE action with the
COPYBACK option, Endevor uses this CCID and/or comment to:

■ Set the generate and component list delta CCID and/or COMMENT
fields.

■ Set the last action CCID and/or COMMENT fields.

Endevor also uses the CCID and comment associated with the copied-back
element to set the source and source delta CCID and/or COMMENT fields
when you generate that element using the COPYBACK option.

COPYBACK—If you select this option, Endevor first copies the current level
of the element back to the FROM stage, then generates the element.

Endevor searches for the element first in the current environment, then in
other stages along the map. You can restrict the search to the current
environment by coding the NOSEARCH option.

If the element currently exists in the FROM stage, Endevor ignores the
COPYBACK option and simply generates the element.

Chapter 4. Element Action Statements 4-31

4.8 The Generate Statement

SEARCH or NOSEARCH—This option is valid only when you have
selected the COPYBACK option. The SEARCH option tells Endevor to look
for the element to be generated with copyback along the map, if it is not in
the current environment.

Code NOSEARCH to restrict Endevor's search to the current environment.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.
This option updates the SIGNOUT ID at the appropriate stage with the user
ID of the person performing the override. Use OVERRIDE SIGNOUT with
caution to avoid regressing changes made by another user.

PROCESSOR GROUP EQ/= group name—Select this option to specify a
predefined, named group of processors. If you do not specify a processor
group, Endevor defaults to the processor group last used for this element.

4.8.3 Example of Generate SCL

The following is an example of GENERATE SCL. This SCL generates
COBOL program PAYRPT01 at Stage 1. The element will be fetched if it
does not already exist at Stage 1.

GENERATE ELEMENT 'PAYRPT17'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE COBOL

STAGE NUMBER 1

OPTIONS CCID REQ#43�23

COMMENT 'REGENERATE WITH NEW COPY BOOKS'

 COPYBACK

 SEARCH .

4-32 SCL Reference Guide

4.8 The Generate Statement

4.9 The List Statement

 4.9.1 Overview

The LIST statement scans elements or members in the Master Control File, an
archive data set, or a library, and generates a list of elements/members that
meet your selection criteria. The LIST action is available in batch only. The
WHERE clause supplies the selection criteria for the LIST action. It selects
the elements based on content as opposed to the names of the elements.

The LIST action searches for elements and/or members in a location defined
by the data you enter in the FROM clause. You can request a LIST action
from one of the following:

■ Endevor (Master Control File)

■ An archive data set

■ An external library

The processing involved is the same for each type of LIST request. The
clauses required, however, depend on the location being searched. Similarly,
the options available depend on the location of the element or member. This
section of the chapter addresses each type of LIST request separately; the
appropriate syntax is illustrated first, followed by a complete discussion of the
associated LIST action rules.

4.9.2 List from Endevor Statement

The LIST FROM Endevor statement generates a list of elements from
Endevor's Master Control File.

 4.9.3 Syntax

��──LISt ELEment──element-name─ ──┬ ┬─THRough─ ─element-name──FROm──ENVironment──env-name─────�
 └ ┘─THRu────

�─ ─SYStem──sys-name─ ─SUBsystem──subsys-name──TYPe──type-name───────────────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ───�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬─── ──────────────────────────────�
 │ │┌ ┐─SYSOut──
 └ ┘ ─TO─ ──┼ ┼ ──┬ ┬─FILe─── ─dd-name───────────────────────────
 │ │└ ┘─DDName─
 └ ┘ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 └ ┘ ─MEMber──member-name─

�─ ─WHEre──¤─ ──┬ ┬───────────────────── ─¤─ ──┬ ┬── ─────�
├ ┤─┤ CCID ├──────────── └ ┘ ─BUIld──¤─ ──┬ ┬───────────────────────── ─¤─
├ ┤─┤ GENERATE ├──────── │ │┌ ┐─&&Action────
├ ┤─┤ SPEC ├──────────── ├ ┤ ─ACTion─ ──┴ ┴─action-name─
└ ┘─┤ PROCESSOR GROUP ├─ │ │┌ ┐─CURrent─

 ├ ┤ ─LEVel─ ──┼ ┼─NONe──── ─────
 │ │└ ┘─ACTual──
 └ ┘─WITh COMponent──────────

Chapter 4. Element Action Statements 4-33

4.9 The List Statement

�─ ──┬ ┬── ─.────────────────────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬──────────────────────────── ─¤─
 ├ ┤─REPlace member─────────────
 ├ ┤─DETail REPort──────────────
 ├ ┤ ─SHOw TEXt─ ──┬ ┬─────────────
 │ │└ ┘─PLUs n line─
 │ │┌ ┐─NOSearch─
 └ ┘──┴ ┴─SEArch─── ──────────────

CCId:
┌ ┐─EQual─ ┌ ┐─,────

├─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

GENERATE:
├──GENerate─ ──┬ ┬─FAIled── ──────────────────┤
 │ │┌ ┐─EQual─
 ├ ┤ ─DATe─ ──┴ ┴─=───── ─date─ ──┬ ┬──────────────────────────────
 │ │└ ┘ ─TIMe─ ──┬ ┬────────────── ─date─
 │ ││ │┌ ┐─EQual─
 │ │└ ┘ ──┴ ┴─────── ─=─

├ ┤─┤ FROM ├──
├ ┤─┤ THROUGH ├───
└ ┘─┤ FROM-THROUGH ├──

FROM:
 ┌ ┐─EQual─
├──FROM──DATe─ ──┼ ┼─────── ─date─ ──┬ ┬─────────────────────── ─────────────────────────────────┤
 └ ┘─=───── │ │┌ ┐─EQual─
 └ ┘ ─TIMe─ ──┴ ┴─=───── ─time─

THRough:
 ┌ ┐─EQual─
├─ ──┬ ┬───────────── ─DATe─ ──┼ ┼─────── ─date─ ──┬ ┬───────────────── ────────────────────────────┤
 └ ┘ ──┬ ┬─THRough─ └ ┘─=───── │ │┌ ┐─EQual─
 └ ┘─THRu──── └ ┘ ─TIMe─ ──┼ ┼───────
 ├ ┤─=─────
 └ ┘─time──

FROM-THROUGH:
 ┌ ┐─EQual─ ┌ ┐─EQual─
├──FROM──DATe─ ──┴ ┴─=───── ─date─ ──┬ ┬─────────────────────── ──┬ ┬─THRough─ ─DATe─ ──┼ ┼─────── ───�
 │ │┌ ┐─EQual─ └ ┘─THRu──── └ ┘─=─────
 └ ┘ ─TIMe─ ──┼ ┼─────── ─time─
 └ ┘─=─────

�──date─ ──┬ ┬─────────────────────── ──┤
 │ │┌ ┐─EQual─
 └ ┘ ─TIMe─ ──┼ ┼─────── ─time─
 └ ┘─=─────

SPEC:
├─ ──┬ ┬ ─TEXt─ ──┬ ┬─text-spec───────────────────────────── ────────────────────────────────────┤
 │ ││ │┌ ┐─,───────── ┌ ┐─,─────────
 │ │└ ┘ ───

┴─text-spec─ ──┬ ┬─AND─ ───

┴─text-spec─

 │ │└ ┘─OR──
 └ ┘ ─ACM─ ──┬ ┬─comp-spec───────────────────────────── ─
 │ │┌ ┐─,───────── ┌ ┐─,─────────
 └ ┘ ───

┴─comp-spec─ ──┬ ┬─AND─ ───

┴─comp-spec─

 └ ┘─OR──

PROCESSOR GROUP:
 ┌ ┐─EQuAL─ ┌ ┐─,──────────
├──PROcessor GROup─ ──┼ ┼─────── ─(─ ───

┴─group name─ ─)──┤

 └ ┘─=─────

Where text-spec is replaced as necessary with:

��─ ──┬ ┬─────────────────────── ─text─ ──┬ ┬───────────────────────────────── ─────────────────��
 │ │┌ ┐─EQual─── └ ┘ ──┬ ┬───────── ─start-pos──end-pos─
 └ ┘ ─DOEs NOT─ ──┼ ┼───────── └ ┘ ─columns─
 ├ ┤─CONTain─
 └ ┘─=───────

and comp-spec is replaced as necessary with:

4-34 SCL Reference Guide

4.9 The List Statement

 ┌ ┐─INPut─────
��─ ──┬ ┬───────── ──┼ ┼─────────── ─COMPonent─ ──┬ ┬─────────────────────────── ──────────────────�
 └ ┘ ─RELated─ ├ ┤─OUTput──── └ ┘ ──┬ ┬────────── ──┬ ┬─────────
 ├ ┤─PROcessor─ └ ┘ ─DOEs NOT─ ├ ┤─CONTain─
 └ ┘─ALL─────── ├ ┤─EQ──────
 └ ┘─=───────

�──comp-name──¤─ ──┬ ┬─── ─¤────────────�
 ├ ┤ ──┬ ┬─THRough─ ─comp-name──────────────────────────────────
 │ │└ ┘─THRu────
 ├ ┤ ─ENVironment──env-name─ ─¤─ ──┬ ┬──────────────────────── ─¤─
 │ │├ ┤─SYStem──sys-name───────
 │ │├ ┤ ─SUBsystem──subsys-name─
 │ │├ ┤─TYPe──type-name────────
 │ │├ ┤ ─STAge NUMber──stage-no─
 │ │├ ┤─VERsion──version───────
 │ │└ ┘─LEVel──level───────────
 ├ ┤ ──┬ ┬─FILe─── ─dd-name─────────────────────────────────────
 │ │└ ┘─DDName─
 └ ┘─DSNname──dataset-name───────────────────────────────────

�──RELated─ ──┬ ┬───────────────── ─COMponent───�
 └ ┘ ─OBJect──COMment─

�─ ──┬ ┬── ─.────────────��
 └ ┘ ──┬ ┬────────── ──┬ ┬───────── ─text─ ──┬ ┬─────────────────────────────────
 └ ┘─DOEs NOT─ ├ ┤─CONTain─ └ ┘ ──┬ ┬───────── ─start-pos──end pos─
 ├ ┤─EQ────── └ ┘ ─columns─
 └ ┘─=───────

 4.9.3.1 Syntax Rules

LIST ELEMENT element-name

Indicates the element(s) to be listed. Code the required syntax and enter the
appropriate element name; up to 10 characters are allowed. In addition, you
can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be listed, beginning with the element
coded in the LIST ELEMENT clause, up to and including the element
specified in this statement. You can use a name mask with the element name.
If you code the THROUGH clause, you cannot enter a member name (in the
TO clause).

FROM ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

The FROM clause indicates the location of the element to be listed. Endevor
uses both the FROM clause in an action and any preceding SET FROM
clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

Chapter 4. Element Action Statements 4-35

4.9 The List Statement

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

TO

The TO clause indicates where the element is to be listed. Endevor uses both
the TO clause in an action and any preceding SET TO clause to determine the
"to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

TO SYSOUT—SYSOUT is the default TO location. If you do not provide a
TO clause, and no SET TO information has been coded, Endevor writes the
action cards to the Execution Report. The Execution Report appears
immediately after the LIST request and cannot be edited.

TO FILE (DDNAME) dd-name or DSNAME dataset- name— You can tell
Endevor to write action cards to both the Execution Report and an external
data set by providing a file name (DDname) or a data set name; if you enter a
FILE or DDNAME, be sure the appropriate JCL is coded. Use this option if
you want to edit the action cards.

TO MEMBER member-name— Enter a member name (up to 10 characters).
This clause is valid only if you are not specifying a sequential file.

■ Endevor ignores a member specification if you have coded the TO
SYSOUT option.

■ The action fails if you code a member name along with a file (DDname)
or data set name that is sequential.

If you are using PDSs and do not provide a member name, Endevor assigns a
temporary name of TEMPNAME. If you wish to use the temporary naming
capability, do not code multiple list requests to the same external data set.

4-36 SCL Reference Guide

4.9 The List Statement

If you are using a PDS and have multiple list statements with only one
member name on a SET statement, then all lists go to same member name
and only first LIST results are available.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid — Limits the list to those elements that match one
of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE GENERATE—This clause allows you to select elements based on
the date and, optionally, time that an element was generated. There are five
forms for this clause.

■ WHERE GENERATE FAILED—Tells Endevor to list only those
elements for which the generate processor failed.

■ WHERE GENERATE DATE mm/dd/yy [TIME hh:mm]—Tells
Endevor to list only those elements with this date, and optionally, time
stamp.

Chapter 4. Element Action Statements 4-37

4.9 The List Statement

■ WHERE GENERATE FROM DATE mm/dd/yy [TIME hh:mm]
—Tells Endevor to list all elements with a date and, optionally, time
stamp on or after the specified date and time stamps.

■ WHERE GENERATE THROUGH DATE mm/dd/yy [TIME hh:mm
]—Tells Endevor to list all elements with a date and, optionally, time
stamp earlier than and including the specified date and time stamp.

■ WHERE GENERATE FROM DATE mm/dd/yy [TIME hh:mm]
THROUGH DATE mm/dd/yy [TIME hh:mm]—Tells Endevor to list
only those elements with date, and optionally, time stamps within the
specified range. If you enter a time, you must enter the date with it.

WHERE TEXT text spec—Limits the list to elements that contain (or do not
contain) one or more specified 1- to 70-character text strings.

4-38 SCL Reference Guide

4.9 The List Statement

Examples:

WHERE TEXT 'WO9-LINKAGE'

In this example, Endevor lists all elements containing the text string
WO9-LINKAGE.

WHERE TEXT ((EQ 'COPY COPY005' COLUMN 8 40) AND EQ
'COPY COPY010' COLUMN 8 40))

In this example, Endevor lists all element containing the text strings COPY
COPY005 and COPY COPY010 between columns 8 and 40 of the element
source.

WHERE TEXT DOES NOT CONTAIN 'REMARKS' COLUMN 8 15

In this example, Endevor lists all elements that do not contain the text string
REMARKS between columns 8 and 15 of the element source.

WHERE TEXT (('M605SUB' OR 'M607SUB') AND DOES NOT
CONTAIN 'M606SUB')

In this example, Endevor lists all elements that contain either the text string
M605SUB or the text string M607SUB and do not contain the text string
M606SUB.

The WHERE TEXT EQUAL clause cannot be used with the WHERE ACM
clauses.

WHERE [ACM] comp spec—Limits the list to component lists containing
the designated 1- to 10-character component name. Wildcards are acceptable
in the component name specification.

WHERE INPUT COMPONENT—is the default. It tells Endevor to list
both input components and related input components matching your entry.

WHERE RELATED INPUT COMPONENT—Tells Endevor to list only
related input components matching your entry.

WHERE OUTPUT COMPONENT—Tells Endevor to list both output
components and related output components matching your criteria.

WHERE RELATED OUTPUT COMPONENT—Tells Endevor to list only
related output components matching your entry.

WHERE PROCESSOR COMPONENT—Tells Endevor to list only
processor components matching the criteria.

Chapter 4. Element Action Statements 4-39

4.9 The List Statement

WHERE ALL COMPONENT—Tells Endevor to list matches within all
three types of components.

WHERE RELATED OBJECT COMPONENT—Tells Endevor to list only
objects matching your entry.

WHERE RELATED COMMENT COMPONENT—Tells Endevor to list
comments matching your entry. Note that this applies only to comments that
have been added to the component list by the CONRELE utility in a
processor step. For more information on the CONRELE utility, see the
Extended Processors Guide.

You can further specify the component using the following clauses.

THROUGH (THRU) comp-name—Tells Endevor to list elements containing
one in a specific range of 1- to 10-character component names. The range
begins with the component name coded in the WHERE COMPONENTS
clause, and encompasses all components up to and including the component
specified in this clause. Wildcards are acceptable in the component name
specification.

ENVIRONMENT env name—Tells Endevor to list elements with
components located in the specified environment. If you provide an
environment name you must also provide the following:

SYSTEM—1 to 8 characters

SUBSYSTEM—1 to 8 characters

TYPE—1 to 8 characters

STAGE NUMBER—either 1 or 2

VERSION version—Tells Endevor to list elements containing components
with a specific version number. Acceptable values are 1-99. The version
number of the component may differ from the version number of the element
with which it is associated.

LEVEL level—Tells Endevor to list elements containing components with a
specific level number. Acceptable values are 00-99. The level number of the
component may differ from the level number of the element with which it is
associated.

FILE (DDNAME) dd-name—Tells Endevor to list elements whose:

■ Input components originated from the specified DDname;

■ Output components were written to the specified DDname;

■ Components were produced by a processor step specified by and
associated with the designated DDname.

DSNAME data set name—Tells Endevor to list elements whose:

■ Input components originated from the specified data set;

4-40 SCL Reference Guide

4.9 The List Statement

■ Output components were written to the specified data set;

■ Components were produced by a processor step specified by and
associated with the designated data set.

WHERE ACM comp spec {AND/OR} comp spec—Allows you to provide
compound component selection criteria. See the previous section for option
descriptions. The WHERE ACM clauses cannot be used with the WHERE
TEXT clause.

WHERE PROCESSOR GROUP group name—This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

BUILD

Indicates specific information to be applied to each action statement generated
by LIST. The data in this clause assists in building the SCL statements (and
builds additional SCL statements if you enter WITH COMPONENTS) that
result from your LIST request.

Note: You cannot build a generate with copyback request using LIST. This
is because LIST can only build an action for an element when the element
exists in the FROM stage.

If you do not enter BUILD information, Endevor looks for a SET BUILD
clause containing the appropriate information. (See the description of SET
BUILD, in Chapter 3, "Set, Clear, and EOF Statements, for additional coding
details.) If a SET BUILD clause has not been coded, the system defaults to
&&ACTION for BUILD ACTION and to CURRENT for BUILD LEVEL.

The WITH COMPONENTS clause is optional within the BUILD clause; if it
is not coded here or in the SET BUILD statement, component information is
not provided in the list.

BUILD ACTION—Determines the action that appears in the LIST action
syntax for the specified element. You can enter either a specific action name
or &&ACTION, which indicates that a specific action will be designated for
this element at a later time. This action can be entered manually or using the
SET ACTION statement.

Chapter 4. Element Action Statements 4-41

4.9 The List Statement

■ BUILD LEVEL—Indicates whether you want the version and level of
the specified element to appear on the action cards generated by the LIST
request:

■ CURRENT—Tells Endevor to include the current version and level of
elements in LIST actions. This is the default if the WHERE
COMPONENTS SPEC clause has not been coded for the action, or no
component list exists (Endevor ACM is not installed). If the where
component spec clause has been coded for the action, the default is
ACTUAL.

■ NONE—Tells Endevor not to list the current version and level for the
element.

■ ACTUAL—valid only if ACM is installed. Tells Endevor to include the
level of the component as recorded in the component list in LIST action
statements, rather than the current level of the element as recorded in the
Master Control File. This is the default if a WHERE COMPONENTS
SPEC clause has been coded for the action.

BUILD WITH COMPONENTS—Indicates that action cards should be
generated for every input component that is associated with the specified
element. BUILD WITH COMPONENTS pertains to the Endevor ACM
product only, and must be used in conjunction with the WHERE ACM clause
(explained earlier in this section).

OPTIONS

OPTIONS clauses allow you to further specify action requests.

REPLACE MEMBER—When you specify a PDS and member name in the
TO clause, list requests fail if the member already exists. Use the REPLACE
MEMBER option if you want to replace the existing member in the TO
location library.

DETAIL REPORT—By default, in the Execution Report, Endevor lists only
those elements matching the selection criteria you specify. If you select the
DETAIL REPORT option, every element searched is listed in the
report—whether or not a match is found.

SHOW TEXT [PLUS n LINES]—This option allows you to print the line
of source code that contains a specified text string, plus a designated number
of lines of code before and after the text string.

You must code the WHERE TEXT clause if you use the SHOW TEXT
option. Otherwise, you receive a syntax error.

SEARCH or NOSEARCH—The SEARCH option tells Endevor to look for
and list all occurrences of the element on the map. The default is
NOSEARCH. Code NOSEARCH to restrict Endevor's list to the current
environment.

4-42 SCL Reference Guide

4.9 The List Statement

4.9.4 List from Archive Data Set

The LIST FROM ARCHIVE DATA SET statement generates a list of
elements from an archive data set.

 4.9.5 Syntax

��──LISt ELEment──element-name─ ──┬ ┬─────────────────────────── ─FROm─────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ──┬ ┬─FILe─── ─dd-name─ ──┬ ┬─────────────── ─ENVironment──env-name────────────────�
 └ ┘─DDName─ └ ┘ ─SITe──site-id─

�─ ─SYStem──sys-name─ ─SUBsystem──subsys-name──TYPe──type-name────────────────────�

�──STAge NUMber──stage-no───�

�─ ──┬ ┬─── ───────────────────�
 │ │┌ ┐─SYSOut──
 └ ┘ ─TO─ ──┼ ┼ ──┬ ┬─FILe─── ─dd-name───────────────────────────

 │ │└ ┘─DDName─
 └ ┘ ─DSName──dataset-name─ ──┬ ┬─────────────────────

 └ ┘ ─MEMber──member-name─

�─ ──┬ ┬── ────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬───────────────────────────────── ─¤─

├ ┤─┤ CCID ├────────────────────────
├ ┤─┤ PRO ├─────────────────────────

 └ ┘─ARChive─ ──┬ ┬─┤ DATE ├───────────
├ ┤─┤ FROM ├───────────
├ ┤─┤ THROUGH ├────────
└ ┘─┤ FROM - THROUGH ├─

�─ ──┬ ┬──────────────────────────────── ──�
 │ │┌ ┐─&&Action────
 └ ┘ ─BUIld──ACTion─ ──┴ ┴─action-name─

�─ ──┬ ┬─── ─.────────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬───────────────────────────── ─¤─
 ├ ┤─REPlace member──────────────
 ├ ┤─DETail REPort───────────────
 └ ┘ ─SHOw TEXt─ ──┬ ┬──────────────

└ ┘──PLUs n lines

CCID:
 ┌ ┐─,────
├──CCId─ ──┬ ┬─EQ─ ─(─ ───

┴─ccid─ ─)───┤

 └ ┘─=──

 DATE:
├─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ──────────────────────────────────┤

 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

FROM:
├─ ─FROm──DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ────────────────────────────┤
 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

THROUGH:
├─ ──┬ ┬─THRough─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ─────────────────────┤
 └ ┘─THRu──── └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)────────────────────────────────┤

 └ ┘─=──

Chapter 4. Element Action Statements 4-43

4.9 The List Statement

 4.9.5.1 Syntax Rules

LIST ELEMENT element-name

Indicates the element(s) to be listed. Code the required syntax and enter the
appropriate element name; up to 10 characters are allowed. In addition, you
can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be listed, beginning with the element
coded in the LIST ELEMENT clause, up to and including the element
specified in this statement. You can use a name mask with the element name.
If you code the THROUGH clause, you cannot enter a member name (in the
TO clause).

FROM FILE (DDNAME)dd-name SITE site-id
 ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name

STAGE NUMBER stage-no

The FROM clause indicates the location of the element to be listed. Endevor
uses both the FROM clause in an action and any preceding SET FROM
clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must code at least a FILE or DDNAME for this request, indicating the
archive data set to be searched for the specified element. Enter this
information first when coding the syntax.

You must specify an environment, system, subsystem, type, and stage number
(either 1 or 2). The environment name must be explicit. You can use a name
mask with the system, subsystem, type, and stage.

Entering a site ID is optional. This field further defines the location of the
element to be listed.

4-44 SCL Reference Guide

4.9 The List Statement

TO

The TO clause indicates where the element is to be listed. Endevor uses both
the TO clause in an action and any preceding SET TO clause to determine the
"to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

TO SYSOUT—SYSOUT is the default TO location. If you do not provide a
TO clause, and no SET TO information has been coded, Endevor writes the
action cards to the Execution Report. The Execution Report appears
immediately after the LIST action request and cannot be edited.

TO FILE (DDNAME) dd-name or DSNAME dataset-name—You can tell
Endevor to write action cards to both the Execution Report and an external
data set by providing a file name (DDname) or a data set name; if you enter a
FILE or DDNAME, be sure the appropriate JCL is coded. Use this option if
you want to edit the action cards.

TO MEMBER member-name—Enter a member name (up to 10 characters).
This clause is valid only if you are not specifying a sequential file.

■ Endevor ignores a member specification if you have coded the TO
SYSOUT option.

■ The action fails if you code a member name along with a file (DDname)
or data set name that is sequential.

If you are using PDSs and do not provide a member name, Endevor assigns a
temporary name of TEMPNAME. If you wish to use the temporary naming
capability, do not code multiple list requests to the same external data set.

If you are using a PDS and have multiple list statements with only one
member name on a SET statement, then all lists go to same member name
and only first LIST results are available.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

Chapter 4. Element Action Statements 4-45

4.9 The List Statement

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID ccid —Limits the list to those elements that match one of the
supplied CCIDs. You can use a name mask in this field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

4-46 SCL Reference Guide

4.9 The List Statement

The examples below illustrate the use of this clause.

Example 1: WHERE CCID EQ PROJ��V

Example 2: WHERE CCID (PROJ��1, PROJ��2, PROJ��4)

WHERE ARCHIVE—This clause allows you to select elements based on the
date and, optionally, time that an element was archived. There are four
possible forms for this clause:

■ WHERE ARCHIVE DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to list only those elements with this archive
date, and optionally, time stamp.

■ WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to list all elements with an archive date and,
optionally, time stamp on or after the specified date and time stamps.

■ WHERE ARCHIVE THROUGH DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to list all elements with an archive date and,
optionally, time stamp earlier than and including the specified date and
time stamp.

■ WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]
THROUGH DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to list only those elements with archive date,
and optionally, time stamps within the specified range. If you enter a
time, you must enter the date with it.

WHERE PROCESSOR GROUP group name—This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

BUILD ACTION&&ACTION

action-name

Determines the action that appears in the LIST action syntax for the specified
element. If you do not enter required BUILD information here, Endevor looks
for a SET BUILD clause containing the appropriate information. (See the
description of SET BUILD, in Chapter 3, "Set, Clear, and EOF Statements,

Chapter 4. Element Action Statements 4-47

4.9 The List Statement

for additional coding information.) If a SET BUILD clause has not been
coded, the system defaults to &&ACTION.

You can enter a specific action (for example, ADD or MOVE) in this clause
or the variable &&ACTION. &&ACTION indicates that a specific action
will be designated for this element at a later time. This action can be entered
manually or using the SET ACTION statement. (See the description of SET
ACTION, in Chapter 3, "Set Clear, and EOF Statements," for additional
coding information.)

OPTIONS

OPTIONS clauses allow you to further specify action requests.

REPLACE MEMBER—When you specify a PDS and member name in the
TO clause, LIST requests fail if the member already exists. Use the
REPLACE MEMBER option if you want to replace the existing member in
the TO location library.

DETAIL REPORT—By default, in the Execution Report, Endevor lists only
those elements matching the selection criteria you specify. If you select the
DETAIL REPORT option, every element searched is listed in the
report—whether or not a match is found.

SHOW TEXT [PLUS n LINES]—This option allows you to print the line
of source code that contains a specified text string, plus a designated number
of lines of code before and after the text string.

4-48 SCL Reference Guide

4.9 The List Statement

4.9.6 List Members (List from External Library)

The LIST MEMBER statement generates a list of elements from an external
library.

 4.9.7 Syntax

��──LISt MEMber──member-name─ ──┬ ┬────────────────────────── ─FROm────────────────�
 └ ┘ ──┬ ┬─THRough─ ─member-name─
 └ ┘─THRu────

�─ ──┬ ┬ ──┬ ┬─FILe─── ─dd-name── ──�
 │ │└ ┘─DDName─
 └ ┘ ─DSName──dataset-name─

�─ ──┬ ┬─── ───────────────────�
 │ │┌ ┐─SYSout──
 └ ┘ ─TO─ ──┼ ┼ ──┬ ┬─FILe─── ─dd-name───────────────────────────

 │ │└ ┘─DDName─
 └ ┘ ─DSName──dataset-name─ ──┬ ┬─────────────────────

 └ ┘ ─MEMber──member-name─

�─ ──┬ ┬─── ───────�
 └ ┘ ─WHEre TEXt─ ──┬ ┬─text-spec───
 │ │┌ ┐─,───────── ┌ ┐─,─────────
 └ ┘ ─(─ ───

┴─text-spec─ ─)─ ──┬ ┬─AND─ ─(─ ───

┴─text-spec─ ─)─

 └ ┘─OR──

�─ ──┬ ┬─────────────────────────────── ───�
 │ │┌ ┐─&&Action────
 └ ┘ ─BUIld ACTion─ ──┴ ┴─action-name─

�─ ──┬ ┬── ─.─────────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬──────────────────────────── ─¤─
 ├ ┤─REPlace member─────────────
 ├ ┤─DETail REPort──────────────
 └ ┘ ─SHOw TEXt─ ──┬ ┬─────────────
 └ ┘──PLUs n line

��─ ──┬ ┬─────────────────────── ─text─ ──┬ ┬──────────────────────────────── ───────��
 │ │┌ ┐─EQual─── └ ┘ ──┬ ┬──────── ─start-pos──end-pos─
 └ ┘ ─DOEs NOT─ ──┼ ┼───────── └ ┘ ─column─
 ├ ┤─CONTain─
 └ ┘─=───────

 4.9.7.1 Syntax Rules

LIST MEMBER member-name

Indicates the member(s) to be listed. Code the required syntax and enter the
appropriate member name; up to 10 characters are allowed. In addition, you
can use a name mask with the member name.

THROUGH (THRU) member-name

Indicates that a range of members should be listed, beginning with the
member coded in the LIST MEMBER clause, up to and including the member
specified in this statement. You can use a name mask with the member
name. If you code the THROUGH clause, you cannot enter a member name
in the TO clause.

Chapter 4. Element Action Statements 4-49

4.9 The List Statement

FROM FILE (DDNAME) dd-name
 DSNAME dataset-name

The FROM clause indicates the location of the member being listed. Endevor
uses both the FROM clause in an action and any preceding SET FROM
clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

If you enter a FILE or DDNAME, be sure the appropriate JCL is coded. The
data set you specify in the FROM clause cannot be a load module library or a
sequential file.

TO

The TO clause indicates where the element is to be listed. Endevor uses both
the TO clause in an action and any preceding SET TO clause to determine the
"to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

TO SYSOUT—SYSOUT is the default TO location. If you do not provide a
TO clause, and no SET TO information has been coded, Endevor writes the
action cards to the Execution Report. The Execution Report appears
immediately after the LIST action request and cannot be edited.

TO FILE (DDNAME)dd-name or DSNAME dataset- name—You can tell
Endevor to write action cards to both the Execution Report and an external
data set by providing a file name (DDname) or a data set name; if you enter a
FILE or DDNAME, be sure the appropriate JCL is coded. Use this option if
you want to edit the action cards.

TO MEMBER member-name—Enter a member name (up to 10 characters).
This clause is valid only if you are not specifying a sequential file.

■ Endevor ignores a member specification if you have coded the TO
SYSOUT option.

4-50 SCL Reference Guide

4.9 The List Statement

■ The action fails if you code a member name along with a file (DDname)
or data set name that is sequential.

If you are using PDSs and do not provide a member name, Endevor assigns a
temporary name of TEMPNAME. If you wish to use the temporary naming
capability, do not code multiple list requests to the same external data set.

If you are using a PDS and have multiple list statements with only one
member name on a SET statement, then all lists go to same member name
and only first LIST results are available.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE TEXT text spec—Limits the list to elements that contain (or do not
contain) one or more specified 1- to 70-character text strings.

 Examples:

WHERE TEXT 'WO9-LINKAGE'

In this example, Endevor lists all elements containing the text string
WO9-LINKAGE.

Where TEXT ('COPY COPY005' COLUMN 7 41 AND
'COPY COPY010' COLUMN 7 41)

In this example, Endevor lists all elements containing the text strings COPY
COPY005 and COPY COPY010 between columns 7 and 41 of the element
source.

WHERE TEXT DOES NOT CONTAIN 'REMARKS' COLUMN 8 15

In this example, Endevor lists all elements that do not contain the text string
REMARKS between columns 8 and 15 of the element source.

WHERE TEXT (('M605SUB' OR 'M607SUB') AND DOES NOT
CONTAIN 'M606SUB')

Chapter 4. Element Action Statements 4-51

4.9 The List Statement

In this example, Endevor lists all elements that contain either the text string
M605SUB or the text string M607SUB and do not contain the text string
M606SUB.

BUILD ACTION&&ACTION action-name

Determines the action that appears in the LIST action syntax for the specified
element. If you do not enter required BUILD information here, Endevor looks
for a SET BUILD clause containing the appropriate information. (See the
description of SET BUILD, in Chapter 3, "Set, Clear, and EOF Statements,"
for additional coding information.) If a SET BUILD clause has not been
coded, the system defaults to &&ACTION.

You can enter a specific action (for example, ADD or MOVE) in this clause
or the variable &&ACTION. &&ACTION indicates that a specific action will
be designated for this element at a later time. This action can be entered
manually or using the SET ACTION statement. (See the description of SET
ACTION, in Chapter 3, "Set, Clear, and EOF Statements," for additional
coding information.)

OPTIONS

OPTIONS clauses allow you to further specify action requests.

REPLACE MEMBER—When you specify a PDS and member name in the
TO clause, list requests fail if the member already exists. Use the REPLACE
MEMBER option if you want to replace the existing member in the TO
location library.

DETAIL REPORT—By default, in the Execution Report, Endevor lists only
those elements matching the selection criteria you specify. If you select the
DETAIL REPORT option, every element searched is listed in the
report—whether or not a match is found.

SHOW TEXT [PLUS n LINES]—This option allows you to print the line
of source code that contains a specified text string, plus a designated number
of lines of code before and after the text string.

You must code the WHERE TEXT clause if you use the SHOW TEXT
option. Otherwise, you receive a syntax error.

4.9.8 Example of List SCL

The following are examples of LIST SCL. In the first example, the SCL
generates a list of all the elements in the Payroll Reporting subsystem that
contain the text "COPY PAYCOPY1" in columns 7 through 45, inclusive.
SCL will be generated for each element found.

4-52 SCL Reference Guide

4.9 The List Statement

LIST ELEMENT '�'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

WHERE TEXT EQ 'COPY PAYCOPY1' COLUMN 7 45

BUILD ACTION GENERATE .

In the second example, the SCL generates a list of all members in
PAYROLL.SRCLIB that begin with "PAYRPT*' and contain the string
"COPY PAYCOPY3" in columns 7 through 45, inclusive. The subsequent
report will display the entire line in which the text was found.

LIST MEMBER 'PAYRPT�'

FROM DSNAME 'PAYROLL.SRCLIB'

WHERE TEXT EQ 'COPY PAYCOPY3' IN COLUMN 7 45

OPTIONS SHOW TEXT .

Chapter 4. Element Action Statements 4-53

4.9 The List Statement

4.10 The Move Statement

 4.10.1 Overview

The MOVE statement moves elements between inventory locations along a
map.

 4.10.2 Syntax

��──MOVe ELEment──element-name─────────────────────────────────�

�─ ──┬ ┬─────────────────────────── ─FROm─────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─ENVironment──env-name──SYStem──sys-name─────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─────────────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬── ─.────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬──────────────────────── ─¤─
 ├ ┤─CCId──ccid─────────────
 ├ ┤─COMment──comment───────
 ├ ┤─SYNchronize────────────
 ├ ┤─WITh HIStory───────────

├ ┤─BYPass ELEment DELete──
 │ │┌ ┐─SIGnin─────────────
 ├ ┤──┼ ┼─RETAin SIGNOut─────
 │ │└ ┘ ─SIGNOut TO──userid─
 └ ┘─JUMp───────────────────

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────┤

 └ ┘─=──

4-54 SCL Reference Guide

4.10 The Move Statement

 4.10.2.1 Syntax Rules

MOVE ELEMENT element-name

Indicates the element(s) to be moved. Code the required syntax and enter the
appropriate element name; up to 10 characters are allowed. In addition, you
can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be moved, beginning with the
element coded in the MOVE ELEMENT statement, up to and including the
element specified in this statement. You can use a name mask with the
element name.

FROM ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name

 STAGE stage id
STAGE NUMBER stage-no

The FROM clause indicates the location of the element being moved.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. You
can use a name mask with the system, subsystem and type. The environment
name and stage information must be explicit. The stage specification can be
either one of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

WHERE

Use the WHERE clause to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

Chapter 4. Element Action Statements 4-55

4.10 The Move Statement

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Stage 3, for more
information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP group name—This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

OPTIONS

OPTIONS clauses allow you to further specify requests.

4-56 SCL Reference Guide

4.10 The Move Statement

CCID ccid/COMMENT comment—You can enter a 1- to 12- character CCID
and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the MOVE action fails.

When you specify a CCID and/or comment in a MOVE action, Endevor
updates the CCID and/or COMMENT fields differently, depending on
whether you specify the MOVE action with history or without history.

When you specify a CCID and/or comment in a MOVE action without
history, Endevor uses this CCID and/or comment to set the last action CCID
and/or COMMENT fields. Endevor also:

■ Sets the source and generate CCID and/or COMMENT fields to their
value at the source location of the move.

■ Sets the source and component list delta CCID and/or COMMENT fields
to their last value at the source location of the move.

■ Clears the retrieve CCID and/or COMMENT field.

When you specify a CCID and/or comment in a MOVE action using the
WITH HISTORY option, Endevor uses this CCID and/or comment to set the
last action CCID and/or COMMENT fields.

Endevor also does the following:

■ Sets the source and generate CCID and/or COMMENT fields to their
value at the source location of the move.

■ Clears the retrieve CCID and/or COMMENT fields.

■ Moves source delta and component list delta CCIDs and comments with
their respective delta levels.

SYNCHRONIZE— The SYNCHRONIZE option compensates for differences
between the base level of a source element and the current level of a target
element. Endevor attempts to find a sync level between the source and target
elements, beginning with the first level at the source, and working forward
through the deltas. If Endevor finds a sync level, it compares the two and
creates a new level at the target that reflects the differences. If Endevor
cannot find a sync level and you specify SYNC, Endevor issues an out of
sync message. Endevor then compares the last level of the source and last
level of the target, and creates a new level at the target that reflects the
differences.

When moving with history, if the sync point is found, Endevor moves the
element from the FROM location to the TO location, appending the FROM
location delta levels after the sync-point element. If the two levels are
different, and SYNC is specified, Endevor first creates a sync level at the
target reflecting the differences between the base level of the FROM element

Chapter 4. Element Action Statements 4-57

4.10 The Move Statement

and the target, then moves the element to the TO location and appends the
FROM location delta levels to the target.

WITH HISTORY—The WITH HISTORY option preserves source element
change history. If you request MOVE WITH HISTORY, Endevor first
ensures that the current level of the target element is the same as the base
level of the source element. It then moves all levels of the element from
source to target, appending the source change history to the target change
history.

4-58 SCL Reference Guide

4.10 The Move Statement

If you do not code this option, Endevor moves the element(s) without history.
When you move the element without history Endevor searches through the
element levels at the source location to find a matching level at the target
location. Endevor then compares the two and creates a new level at the target
location that reflects the differences.

If the base level of the source element differs from the current level at the
target, the move fails unless you code the SYNCHRONIZE option.

BYPASS ELEMENT DELETE—This option tells Endevor to retain the
element in the source stage after successfully completing the move.

SIGNIN—Default. This option tells Endevor to sign in all elements at the
target stage after successfully completing the move. You must code this
option to override SET OPTION RETAIN SIGNOUT or SET OPTION
SIGNOUT TO clauses.

RETAIN SIGNOUT—This option tells Endevor to retain the source location
signouts for all elements at the target location. This option applies only if the
element was signed out at the target before the MOVE.

If the element was signed out at the target before the MOVE, it will be signed
out to that same ID—at the target—after the MOVE.

If the element was not signed out at the target before the MOVE, it will not
be signed out at the target after the MOVE.

If you do not use this option, the element at the target location is not signed
out, regardless of whether it was signed out at the target before the MOVE
took place.

SIGNOUT TO userid—This option tells Endevor to sign all elements out to
the specified user ID at the target stage.

JUMP—The JUMP option tells Endevor to move elements across
environments even if the element exists at an intermediate stage that is not on
the map. If the element exists at an intermediate stage, the move fails if REQ
ELM JUMP ACKNOWLEDGE=Y at the system level and the JUMP option
is not coded.

In either case, Endevor issues a message informing you that the element exists
in a non-map stage between the source and target stages of the move.

Chapter 4. Element Action Statements 4-59

4.10 The Move Statement

4.10.3 Example of Move SCL

The following is an example of MOVE SCL. This SCL moves an element
from Stage 1. The element history will be retained at the target stage.

MOVE ELEMENT 'PAYRPT17'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

OPTIONS CCID REQ#43�34

COMMENT 'MOVE INTO PRODUCTION'

WITH HISTORY .

4-60 SCL Reference Guide

4.10 The Move Statement

4.11 The Print Statement

 4.11.1 Overview

The PRINT statement prints selected information about an element(s) or
library member(s), depending on the data entered in the FROM clause. You
can print from either Endevor or selected output libraries (for example, a
PDS, CA-PANVALET, etc.).

4.11.2 Printing from Endevor

When executing the PRINT action against Endevor, you can request the
following information about elements and component lists:

■ BROWSE (the default) prints all statements in the specified level of the
element, as well as the level at which each statement was inserted.

■ CHANGES shows all inserts and deletes made to the element at the level
specified.

■ HISTORY prints all statements in all levels of the element.

■ SUMMARY prints one line of summary information for each level.

You can request the following information about elements only:

■ MASTER prints Master Control File information for the element.

4.11.3 Printing from an Output Library

When you execute the PRINT action against an output library, the source of
the selected, footprinted member(s) is printed.

Chapter 4. Element Action Statements 4-61

4.11 The Print Statement

4.11.4 Print Element Statement

The PRINT ELEMENT statement prints selected information about the
element you specify. You can print from either Endevor or from selected
output libraries.

 4.11.5 Syntax

��──PRInt ELEment──element-name────────────────────────────────�

�─ ──┬ ┬─────────────────────────── ──┬ ┬────────────────── ────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─ └ ┘ ─VERsion──version─
 └ ┘─THRu────

�─ ──┬ ┬────────────── ─FROm──ENVironment──env-name───────────────�
 └ ┘ ─LEVel──level─

�─ ─SYStem──sys-name──SUBsystem──subsys-name────────────────────�

�─ ─TYPe──type-name──STAge NUMber──stage-no─────────────────────�

 ┌ ┐─C1Print─────────────
�─ ─TO─ ──┴ ┴──┬ ┬─FILe─── ─dd-name─ ────────────────────────────────�
 └ ┘─DDName─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.───────────��
 └ ┘ ─OPTions──¤─ ──┬ ┬──────────────────────── ─¤─
 ├ ┤─NOCc───────────────────
 │ │┌ ┐─BROwse──
 ├ ┤ ─COMPonent─ ──┼ ┼─CHAnge──
 │ │├ ┤─HIStory─
 │ │└ ┘─SUMmary─
 ├ ┤─MASter─────────────────
 │ │┌ ┐─NOSearch─
 └ ┘──┴ ┴─SEArch─── ──────────

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────┤

 └ ┘─=──

4-62 SCL Reference Guide

4.11 The Print Statement

 4.11.5.1 Syntax Rules

PRINT ELEMENT element-name

Indicates the 1- to 10-character name of the element(s) to be printed. You
can use a name mask, unless you specify a level (in the LEVEL clause).

THROUGH (THRU) element-name

Indicates that a range of elements should be printed, beginning with the
element coded in the PRINT ELEMENT statement, up to and including the
element specified in this statement. You can use a name mask with either
name. If you enter a THROUGH clause, you cannot enter a LEVEL clause.

VERSION version

Indicates the version number of the element you want to print. Acceptable
values are 1-99. You must code a full element name if you want to indicate a
version number.

LEVEL level

Tells Endevor to print data for the designated level of the element.
Acceptable values are 00-99. By default Endevor prints information for the
current level.

If you enter a LEVEL clause, you cannot use the THROUGH clause, and you
must code a full element name in the PRINT ELEMENT clause.

FROM ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being printed.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

Chapter 4. Element Action Statements 4-63

4.11 The Print Statement

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage number
(either 1 or 2). The environment name must be explicit. You can use a name
mask with the system, subsystem, type, and stage number.

TO C1PRINT..
FILE (DDNAME) dd-name

The TO clause indicates where the element is being printed. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information. If a SET TO clause has not been
entered, the system defaults to C1PRINT and prints the element in a listing.

As an alternative, you can print the element or member to a sequential file;
that is, to a FILE (DDNAME). The indicated file must be sequential, with a
record length of 133, or the PRINT action fails. Be sure the appropriate JCL
is coded if you use either a FILE or DDNAME for the TO location.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,

4-64 SCL Reference Guide

4.11 The Print Statement

Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control
File's RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The following examples illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP group name—This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if and
separating them with commas. The processor groups may extend over
multiple lines if necessary.

The examples below illustrate the use of this clause:

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

OPTIONS

OPTIONS clauses allow you to further specify an action request.

NOCC—By default, Endevor prints a header on each page of the printed
output. You can suppress the printing of the header by entering this option in
the PRINT statement.

COMPONENTS—When you select this option, Endevor prints all component
information for the element specified. There are five forms of this clause:

■ BROWSE—When you select the BROWSE option, Endevor prints the
current element or component list source, indicating the level at which
each line was added. If you specify a particular level, Endevor prints the
source for that level.

■ CHANGES—When you select the CHANGES option, Endevor prints all
the changes—inserts and deletes—made to the element or component list
at the level specified. If you do not specify a level in the LEVEL clause,
changes for the current level of the element are shown.

Chapter 4. Element Action Statements 4-65

4.11 The Print Statement

■ HISTORY—When you select the HISTORY option, Endevor prints all
lines that have ever been in the element or component list source, noting
the level at which the line was added, changed, or deleted. If you specify
a level in the LEVEL clause, Endevor prints history for that level.

■ SUMMARY—When you select the SUMMARY option, Endevor prints a
summary line of data for each level of the element or component list
specified, and includes information appropriate to that level (for example,
the number of inserts and the number of deletes).

■ MASTER—When you select the MASTER option, Endevor prints
Master Control File information stored for the selected element, as well
as current data pertaining to that element (such as last processor,
processor return codes, current version/level, etc.)

The BROWSE, CHANGES, HISTORY, SUMMARY, and MASTER printouts
provide the same information as their corresponding online panels. See the
User Guide for additional details.

If you code only COMPONENTS, Endevor prints BROWSE information. If
you code COMPONENTS in conjunction with the BROWSE, CHANGES,
HISTORY, SUMMARY, and MASTER options, Endevor prints the requested
information for the element component list.

Endevor prints as much information as is available for the component list.
For example, if you code COMPONENTS CHANGES but there were no
changes to the output components section, that section would not appear in
the associated listing. The COMPONENTS option applies only to section
would not appear in the associated listing. The COMPONENTS option
applies only to Endevor ACM. If you are not a Endevor ACM user and you
code this option, the action fails.

SEARCH or NOSEARCH—The SEARCH option tells Endevor to look and
print all occurrences of the element on the map.

The default is NOSEARCH. Code NOSEARCH to restrict Endevor's search
to the current environment.

4-66 SCL Reference Guide

4.11 The Print Statement

4.11.6 Print Member Statement

The PRINT MEMBER statement prints selected information about the
member you specify. You can print from either Endevor or from selected
output libraries.

 4.11.7 Syntax

��──PRInt MEMber──member-name─ ──┬ ┬────────────────────────── ───�
 └ ┘ ──┬ ┬─THRough─ ─member-name─
 └ ┘─THRu────

�─ ─FROm─ ──┬ ┬ ──┬ ┬─FILe─── ─dd-name── ─────────────────────────────�
 │ │└ ┘─DDName─
 └ ┘ ─DSName──dataset-name─

 ┌ ┐─C1Print─────────────
�─ ─TO─ ──┴ ┴──┬ ┬─FILe─── ─dd-name─ ─.─────────────────────────────��
 └ ┘─DDName─

 4.11.7.1 Syntax Rules

PRINT MEMBER member-name

Indicates the 1- to 10-character name of the member(s) to be printed. You
can use a name mask.

THROUGH (THRU) member-name

Indicates that a range of members should be printed beginning with the
member coded in the PRINT MEMBER statement, up to and including the
member specified in this statement. You can use a name mask with either
name.

FROM FILE (DDNAME) dd-name
 DSNAME dataset-name

The FROM clause indicates the location of the member being printed.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

Chapter 4. Element Action Statements 4-67

4.11 The Print Statement

You must enter a FILE, DDNAME, or DSNAME (enter one and only one);
be sure the appropriate JCL is coded for a FILE or DDNAME. If you enter
any other information in the FROM clause, it is ignored.

TO C1PRINT..
FILE (DDNAME) dd-name

The TO clause indicates where the member is being printed. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information. If a SET TO clause has not been
entered, the system defaults to C1PRINT and prints the element in a listing.

As an alternative, you can print the element or member to a sequential file;
that is, to a FILE or DDNAME. The indicated file must be sequential, with a
record length of 133, or you receive an error message. Be sure the
appropriate JCL is coded if you use either a FILE or DDNAME for the TO
location.

4.11.8 Example of Print SCL

The following are examples of PRINT SCL. In the first example, the SCL
prints the current version of element "PAYRPT19." The output is written to
the default DDname (C1PRINT).

PRINT ELEMENT 'PAYRPT19'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1 .

The SCL in the second example prints member "PAYRPT12" from the
Endevor Listing Library. The output is sent to the default DDname
(C1PRINT).

PRINT MEMBER 'PAYRPT12'

FROM DSNAME 'ENDEVOR.PAYROLL.STAGE1.LISTINGS' .

4-68 SCL Reference Guide

4.11 The Print Statement

4.12 The Restore Statement

 4.12.1 Overview

The RESTORE statement restores an element from an archive data set back to
Endevor, "copying" the source as it was before the element was archived or
transferred to the data set.

The RESTORE action is available in batch only.

 4.12.2 Syntax

��──REStore ELEment──element-name─ ──┬ ┬─────────────────────────── ─FROm──────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ──┬ ┬─FILe─── ─dd-name─ ──┬ ┬─────────────── ─ENVironment──env-name────────────────�
 └ ┘─DDName─ └ ┘ ─SITe──site-id─

�─ ─SYStem──sys-name─ ─SUBsystem──subsys-name──TYPe──type-name────────────────────�

�──STAge NUMber──stage-no──TO─ ─ENVironment──env-name──SYStem──sys-name──────────�

�─ ─SUBsystem──subsys-name─ ─TYPe──type-name─ ──┬ ┬─STAge──stage-id──────── ─────────�
 └ ┘ ─STAge NUMber──stage-no─

�──ELEment──element-name──�

�─ ──┬ ┬── ────────────────────────�
 └ ┘ ─WHERE──¤─ ──┬ ┬───────────────────────────────── ─¤─
 │ │┌ ┐─,────
 ├ ┤ ─CCId─ ──┬ ┬─EQ─ ─(─ ───

┴─ccid─ ─)────

 │ │└ ┘─=──
 └ ┘─ARChive─ ──┬ ┬─┤ DATE ├───────────

├ ┤─┤ FROM ├───────────
├ ┤─┤ THROUGH ├────────
└ ┘─┤ FROM - THROUGH ├─

�─ ──┬ ┬── ─.───────────��
 └ ┘ ─OPTions──¤─ ──┬ ┬─── ─¤─
 ├ ┤─CCId──ccid──────────────────────────────
 ├ ┤─COMment──comment────────────────────────
 ├ ┤─NEW VERsion──version────────────────────

└ ┘──┬ ┬─BYPass GENerate PROcessor───────────
 └ ┘ ─PROcessor GROup─ ──┬ ┬─EQ─ ─group-name─
 └ ┘─=──

DATE:
├─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ──────────────────────────────────┤

 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

FROM:
├─ ─FROm──DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ────────────────────────────┤
 └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

THROUGH:
├─ ──┬ ┬─THRough─ ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ─────────────────────┤
 └ ┘─THRu──── └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬─EQ─ ─time─
 └ ┘─=──

Chapter 4. Element Action Statements 4-69

4.12 The Restore Statement

 4.12.2.1 Syntax Rules

RESTORE ELEMENT element-name

Indicates the element(s) to be restored. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be restored, beginning with the
element coded in the RESTORE ELEMENT statement, up to and including
the element specified in this statement. You can use a name mask with the
element name. If you use the THROUGH clause, however, you cannot enter
a new element name (in the TO clause).

FROM FILE (DDNAME) dd-name SITE site-id
 ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being restored.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must enter a FILE or DDNAME, indicating from which archive file the
element is being restored. Enter this information first when coding the syntax.

You must also specify the environment, system, subsystem, type, and stage
number (either 1 or 2). The environment name must be explicit. You can
use a name mask with the system, subsystem, type, and stage number.

Entering a site ID is optional. This field further defines the location of the
element being restored.

TO ENVIRONMENT env-name
 SYSTEM system-name

 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id
 STAGE NUMBER stage-no
 ELEMENT element-name

4-70 SCL Reference Guide

4.12 The Restore Statement

The TO clause indicates where the element is being restored. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

If no SET TO clause has been coded, Endevor retrieves the required
information from the FROM clause coded for this action. Environment must
be coded first in TO.

You must specify an environment, system, subsystem, type, and stage. The
stage specification can be either one of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

Remember that you cannot use a name mask with a TO field name.

Enter a different element name if you want to change the element name
specified (that is, the archived element name) in the RESTORE ELEMENT
clause. If you do not enter an element name here, Endevor uses the archived
element name.

■ You can enter a new element name only if a full element name was
coded in the RESTORE ELEMENT clause; that is, if you have not used a
name mask.

■ If you enter an element name here, you cannot use the THROUGH
clause.

■ If you want to code a different element name, you must do so in the
RESTORE statement. The SET TO MEMBER clause does not apply to
this action.

Chapter 4. Element Action Statements 4-71

4.12 The Restore Statement

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID ccid —Limits the processing to those elements that match
one of the supplied CCIDs. You can use a name mask in this field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause:

Example 1: WHERE CCID EQ PROJ��V

Example 2: WHERE CCID (PROJ��1, PROJ��2, PROJ��4)

WHERE ARCHIVE—This clause allows you to select elements based on the
date and, optionally, time that an element was archived. There are four
possible forms for this clause:

WHERE ARCHIVE DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to archive only those elements with this date, and
optionally, time stamp.

WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to archive all elements with a date and, optionally,
time stamp on or after the specified date and time stamps.

WHERE ARCHIVE THROUGH DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to archive all elements with a date and, optionally,
time stamp earlier than and including the specified date and time stamp.

4-72 SCL Reference Guide

4.12 The Restore Statement

WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]
THROUGH DATE mm/dd/yy [TIME hh:mm]

This clause tells Endevor to archive only those elements with date, and
optionally, time stamps within the specified range.

Note: If you enter a time, you must enter the date with it.

OPTIONS

CCID ccid/COMMENT comment—You can enter a 1- to 12-character CCID
and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the RESTORE action fails.

When you specify a CCID and/or comment in a RESTORE action for an
existing element, Endevor uses this CCID and/or comment to:

■ Set the generate and component list delta CCID and/or COMMENT fields
if the generate processor is run. Endevor writes this comment to the
Master Control File replacing the comment for that element. Endevor
does not set these fields if you code BYPASS GENERATE
PROCESSOR.

■ Set the last action CCID and/or COMMENT fields.

Endevor sets the source, source delta, and RETRIEVE CCID and/or
COMMENT fields based on the archive data set.

NEW VERSION version—Tells Endevor to assign the specific version
number to the element. Acceptable values are 1-99.

BYPASS GENERATE PROCESSOR—Tells Endevor not to execute the
generate processor after restoring the element.

PROCESSOR GROUP group name—Tells Endevor which processor group
to associate with the restored element.

Chapter 4. Element Action Statements 4-73

4.12 The Restore Statement

4.12.3 Example of Restore SCL

The following is an example of RESTORE SCL. This SCL restores all of the
COBOL elements from the archive file associated with the ARCHIN DD
statement that you specify in the execution JCL.

RESTORE ELEMENT '�'

FROM FILE ARCHIN

 ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

 TO ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

OPTIONS CCID REQ344145

COMMENT 'ARCHIVE REPORTING SUBSYSTEM PROGRAMS' .

4-74 SCL Reference Guide

4.12 The Restore Statement

4.13 The Retrieve Statement

 4.13.1 Overview

The RETRIEVE statement copies an element to a user data set.

 4.13.2 Syntax

��──RETrieve ELEment──element-name─ ──┬ ┬─────────────────────────── ─────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ──┬ ┬────────────────── ──┬ ┬────────────── ─FROm────────────────────────�
 └ ┘ ─VERsion──version─ └ ┘ ─LEVel──level─

�─ ─ENVironment──env-name─ ─SYStem──sys-name──SUBsystem──subsys-name─────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge──stage-id──────── ─TO─────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬ ──┬ ┬─FILe─── ─dd-name─────────────────────────── ──────────────────�
 │ │└ ┘─DDName─
 ├ ┤ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 │ │└ ┘ ─MEMber──member-name─
 └ ┘─PATH──hfspath──HFSFILE──filename──────────────

�─ ──┬ ┬─────────────────────────── ──────────────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬──────────────────────────────────── ─.──────────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬────────────────── ─¤─
 ├ ┤─CCId──ccid───────
 ├ ┤ ─COMment──comment─
 ├ ┤─REPlace member───
 ├ ┤─NO SIGNOut───────
 ├ ┤─EXPand include───
 ├ ┤─OVErride SIGNOut─
 │ │┌ ┐─SEArch───
 └ ┘──┴ ┴─NOSearch─ ────

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQual─ ─(─ ───

┴─group name─ ─)────────────────────┤

 └ ┘─=─────

Chapter 4. Element Action Statements 4-75

4.13 The Retrieve Statement

 4.13.2.1 Syntax Rules

RETRIEVE ELEMENT element-name

Indicates the 1- to 10-character name of the element(s) to be retrieved. You
can specify the element name using a name mask, unless you want to retrieve
a specific level of the element.

THROUGH (THRU) element-name

Indicates that a range of elements should be retrieved, beginning with the
element coded in the RETRIEVE ELEMENT statement, up to and including
the element specified in this statement. You can use a name mask with the
element name.

If you use the THROUGH clause, you cannot enter a member name in the
TO clause or a different level in the LEVEL clause.

VERSION version

Indicates the version of the element you want to retrieve. Acceptable values
are 1-99. By default Endevor retrieves the version of the element at the target
stage.

You must specify a full element name if you want to indicate a version
number.

LEVEL level

Indicates the level of the element you want to retrieve. Acceptable values are
00-99. By default Endevor retrieves the current level of the element at the
target stage.

If you enter a LEVEL clause, you cannot use the THROUGH clause, and you
must code a full element name in the RETRIEVE ELEMENT clause.

FROM ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

4-76 SCL Reference Guide

4.13 The Retrieve Statement

The FROM clause indicates the location of the element being retrieved.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

If you use a name mask with the stage, Endevor begins searching for the
specified element(s) in Stage 1 of the current environment, and retrieves the
first element that matches the specified element name, regardless of its
location, version or level.

TO FILE (DDNAME) dd-name
 DSNAME dataset-name
 MEMBER member-name

 PATH hfspath
 HFSFILE filename

The TO clause indicates where the element is being retrieved. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

You must enter a FILE, DDNAME, DSNAME or PATH in conjunction with
HFSFILE (enter one and only one). If you enter either a FILE or DDNAME,
be sure the appropriate JCL is coded.

Enter a member name (up to 10 characters) if it differs from the element
name specified in the RETRIEVE ELEMENT clause. Remember that you
cannot use a name mask with a TO field name.

Chapter 4. Element Action Statements 4-77

4.13 The Retrieve Statement

 If you do not enter a member name, Endevor assumes that the element name
and member name are the same. If you code a member name:

■ The RETRIEVE ELEMENT clause must contain a fully qualified element
name.

■ You cannot use the THROUGH clause.

The SET TO MEMBER clause does not apply to the RETRIEVE action.

PATH

The HFS directory you want to retrieve the element from. This has a
maximum of 768 characters.

HFSFILE

The name of the file for the retrieved element. The file name has a maximum
of 255 characters.

For more information see 1.6.1, “HFSFile Syntax Rules” on page 1-21. the
beginning of this chapter.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid—Limits the processing to those elements that match
one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the
Master Control File to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

4-78 SCL Reference Guide

4.13 The Retrieve Statement

If you need to select elements identified under more than one CCID, you
can specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple
lines if necessary.

The examples below illustrate the use of this clause:

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP group name— This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

OPTIONS

OPTIONS clauses allow you to further specify action requests.

CCID ccid/COMMENT comment—You can enter a 1- to 12-character CCID
and/or a 1- to 40-character comment. CCIDs and/or comments may be
required. If you do not provide a required CCID and/or comment, the
RETRIEVE action fails.

When you specify a CCID and/or comment in a RETRIEVE action for an
existing element, Endevor uses this CCID and /or comment to set the
RETRIEVE CCID and/or COMMENT fields.

REPLACE MEMBER—If you retrieve an element to a library, Endevor
checks to see whether that element is currently in the library. By default, if
this condition exists, the request will be rejected. The REPLACE MEMBER
option, however, enables you to replace the member currently in the library
with the retrieved element. Specify this option when you want to replace the
existing member in the library.

NO SIGNOUT—This option is applicable only if SIGNIN/SIGNOUT is in
effect for the system. NO SIGNOUT enables the element to be retrieved
without signing it out; that is, if you select this option, the element is not
signed out to your user ID. This enables another user to retrieve the element
at the same time you are working with it. Similarly, if you want to use an
element currently signed out to another user, you can retrieve a copy of it if
that user has selected the NO SIGNOUT option.

Chapter 4. Element Action Statements 4-79

4.13 The Retrieve Statement

If you use NO SIGNOUT, any CCIDS and comments are ignored.
Consequently, the Master Control File is not updated

EXPAND INCLUDES—This option indicates that INCLUDE statements
should be expanded when the element is copied to the external data set.

In addition, the type definition for this element must specify an INCLUDE
library.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.
Use OVERRIDE SIGNOUT with caution to avoid regressing changes made
by another user.

SEARCH/NOSEARCH—The SEARCH option tells Endevor to look for the
element to be retrieved along the map, if it is not in the current environment.
The default is SEARCH.

Code NOSEARCH to restrict Endevor's search to the current environment.

4-80 SCL Reference Guide

4.13 The Retrieve Statement

4.13.3 Example of Retrieve SCL

The following is an example of RETRIEVE SCL. This SCL retrieves Payroll
program "PAYRPT23." The map will be searched if the program is not found
at Stage 1.

RETRIEVE ELEMENT 'PAYRPT23'

FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

 STAGE 1

TO DSNAME 'PAYROLL.SRCLIB' MEMBER 'PAYRPT31'

OPTIONS CCID REQ#43�24

COMMENT 'RETRIEVE THE FICA TAX REPORTING PROGRAM'

 SEARCH

REPLACE MEMBER .

Chapter 4. Element Action Statements 4-81

4.13 The Retrieve Statement

4.14 The Signin Statement

 4.14.1 Overview

The SIGNIN statement removes a user signout associated with an element. It
also enables you to sign out or reassign an element to another user.

 4.14.2 Syntax

��──SIGnin ELEment──element-name───────────────────────────────�

�─ ──┬ ┬─────────────────────────── ─FROm─────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─ENVironment──env-name──SYStem──sys-name─────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─────────────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬────────────────────────────────────── ─.────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬──────────────────── ─¤─
 ├ ┤─OVErride SIGNOut───
 ├ ┤ ─SIGNOut TO──userid─
 │ │┌ ┐─NOSearch─
 └ ┘──┴ ┴─SEArch─── ──────

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────┤

 └ ┘─=──

 4.14.2.1 Syntax Rules

SIGNIN ELEMENT element-name

Indicates the element(s) to be signed in. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name.

4-82 SCL Reference Guide

4.14 The Signin Statement

THROUGH (THRU) element-name

Indicates that a range of elements should be signed in, beginning with the
element coded in the SIGNIN ELEMENT statement, up to and including the
element specified in this statement. You can use a name mask with the
element name.

FROM ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being signed in.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

If you use a name mask with the stage, Endevor begins searching for the
specified element(s) in Stage 1 of the current environment, and signs in the
first element that matches the specified element name, regardless of its
location, version or level.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

Chapter 4. Element Action Statements 4-83

4.14 The Signin Statement

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP group name—This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

4-84 SCL Reference Guide

4.14 The Signin Statement

OPTIONS

OPTIONS clauses allow you to further specify action requests.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.
Use OVERRIDE SIGNOUT with caution to avoid regressing changes made
by another user.

SIGNOUT TO—Enables you to sign out or reassign an element at either
stage to another user. If you have an element signed out to your user ID, you
can use this option to reassign that element to the other user.

SEARCH/NOSEARCH—The NOSEARCH option tells Endevor to restrict
its search to the current environment. The default is NOSEARCH.

Code SEARCH to tell Endevor to look for the element to be signed in along
the map, if it is not in the current environment.

4.14.3 Example of Signin SCL

The following is an example of SIGNIN SCL. This SCL signs in all COBOL
elements that begin with "PAYRPT*" at Stage 1 and are associated with
CCID REQ#39934.

SIGNIN ELEMENT 'PAYRPT�'

 FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

WHERE CCID OF CURRENT = REQ#39934.

Chapter 4. Element Action Statements 4-85

4.14 The Signin Statement

4.15 The Transfer Statement

 4.15.1 Overview

The TRANSFER statement transfers an element from one location to another.
There are three types of transfers:

■ Endevor to Endevor transfers elements from one Endevor location to
another.

■ Endevor to an archive data set transfers elements from Endevor to an
archive data set.

■ Archive/unload data set to Endevor transfers elements from an archive
data set or an unload tape to Endevor.

The TRANSFER action is available in batch only. If the elements have been
transferred to an archive data set, the COPY, LIST, and RESTORE actions
can be executed against that data set.

4.15.2 Transfer from Endevor to Endevor Statement

The TRANSFER FROM Endevor TO Endevor statement transfers elements
from one Endevor location to another.

 4.15.3 Syntax

4-86 SCL Reference Guide

4.15 The Transfer Statement

��──TRAnsfer ELEment──element-name─ ──┬ ┬────────────────── ──┬ ┬────────────── ─────�
 └ ┘ ─VERsion──version─ └ ┘ ─LEVel──level─

�─ ──┬ ┬─────────────────────────── ─FROm──┤ DEF ├─────────────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRU────

�──TO──┤ DEF ├─ ──┬ ┬─────────────────────── ──┬ ┬─────────────────────────── ───────�
 └ ┘ ─ELEment──element-name─ └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.────────────��
 └ ┘ ─OPTION──¤─ ──┬ ┬─── ─¤─
 ├ ┤─CCId──ccid──────────────────────────────
 ├ ┤─COMment──comment────────────────────────
 ├ ┤─NEW VERsion──version────────────────────

├ ┤─IGNore generate failed──────────────────
 ├ ┤─OVErride SIGNOut────────────────────────
 ├ ┤─WITh HIStory────────────────────────────
 ├ ┤─SYNchronize─────────────────────────────

├ ┤──┬ ┬─BYPass GENerate PROcessor───────────
 │ │└ ┘ ─PROcessor GROup─ ──┬ ┬─EQ─ ─group-name─
 │ │└ ┘─=──
 ├ ┤──┬ ┬─BYPass ELEment DELete─── ────────────

│ │└ ┘─BYPass DELete PROcessor─
 │ │┌ ┐─SIGnin─────────────
 └ ┘──┼ ┼─RETain SIGNOut───── ─────────────────
 └ ┘ ─SIGNOut TO──userid─

DEF:
├─ ─ENVIronment──environment-name──SYStem──system-name───────────────────────────�

�─ ─SUBSYStem──subsystem-name─ ─TYPe──type-name─ ──┬ ┬─STAge──stage-id──────── ──────┤
 └ ┘ ─STAge NUMber──stage-no─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)────────────────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────

 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)────────────────────────────────┤

 └ ┘─=──

 4.15.3.1 Syntax Rules

TRANSFER ELEMENT element-name

Identifies the element(s) to be transferred. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name.

VERSION

Identifies the version (1-99) of the element you want to transfer. If you use
this clause you must specify a full element name.

LEVEL

Identifies the level (00-99) of the element you want to transfer. If you use
the LEVEL clause you:

Chapter 4. Element Action Statements 4-87

4.15 The Transfer Statement

■ Cannot use the THROUGH clause.

■ Must specify a full element name.

If you do not specify a LEVEL clause, the Transfer action transfers all levels
to the target location. If you specify this clause, Endevor only transfers the
level you indicate.

If the specified level is not the current level, the execution of the generate
processor at the target location is forced, regardless of the setting specified by
the processor group definition.

THROUGH (THRU) element-name

Indicates that a range of elements should be transferred, beginning with the
element coded in the TRANSFER ELEMENT statement, up to and including
the element specified in this statement. You can use a name mask with the
element name.

FROM ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

FILE(DDNAME) can point to an archive data set or to an unload dataset.

The FROM clause indicates the location of the element being transferred.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

4-88 SCL Reference Guide

4.15 The Transfer Statement

TO ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no
 ELEMENT element-name

The TO clause indicates where the element is being transferred. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

If no SET TO clause has been coded and the TO clause system, subsystem,
type, or element fields are not coded, these fields will default to the
corresponding values coded in the FROM clause.

Note: The target environment and stage values must be explicitly coded in
the TO clause or SET TO clause. Wildcarding and name masking are not
allowed for any of the TO clause fields.

You must specify environment, system, subsystem, type, and stage. The stage
specification can be either one of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

Remember that you cannot use a name mask with a TO field name.

Enter a different element name if you want to change the element name
specified in the TRANSFER ELEMENT clause. If you do not enter an
element name here, Endevor assigns the FROM location element name.

■ You can enter a new element name only if a full element name was
coded in the TRANSFER ELEMENT clause; that is, if you have not used
a name mask.

■ If you want to code a different element name, you must do so in the
TRANSFER statement; the SET TO MEMBER clause does not apply to
this action.

WHERE

Chapter 4. Element Action Statements 4-89

4.15 The Transfer Statement

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control
File's RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ���)

WHERE PROCESSOR GROUP group name—This clause allows you to
select elements according to a specified processor group. You can use a
name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COB�)

OPTIONS

4-90 SCL Reference Guide

4.15 The Transfer Statement

OPTIONS clauses allow you to further specify action requests.

CCID ccid/COMMENT comment—You can enter a 1- to 12-character
CCID and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the TRANSFER action fails.

When you specify a CCID and/or comment in a TRANSFER action, Endevor
updates CCID and/or COMMENT fields differently, depending on whether
you specify the TRANSFER request without history, with history, or with
synchronization.

When you specify a CCID and/or comment in a TRANSFER action without
history, Endevor uses this CCID and/or comment to:

■ Set the generate and component list delta CCID and/or COMMENT fields
if the generate processor is run.

■ Set the last action CCID and/or COMMENT fields.

Endevor also:

■ Clears the retrieve CCID and/or COMMENT fields.

■ Sets the source CCID and /or COMMENT fields from their value in the
previous stage.

■ Sets the source delta CCID and/or COMMENT fields from their last delta
value in the previous stage.

When you specify a CCID and/or comment in a TRANSFER action using the
WITH HISTORY option, Endevor uses the CCID and/or comment to:

■ Set the generate and component list delta CCID and/or COMMENT fields
if the generate processor is run.

■ Set the last action CCID and/or COMMENT fields.

Endevor also:

■ Clears the retrieve CCID and/or COMMENT fields.

■ Sets the source CCID and/or COMMENT fields from their value in the
previous stage.

■ Moves source delta CCIDs and COMMENTs with their respective delta
levels.

When you specify a CCID and/or comment in a TRANSFER action using
the SYNCHRONIZE option, Endevor uses this CCID and/or comment to:

■ Set the retrieve CCID and/or COMMENT fields.

■ Set the source CCID and/or COMMENT fields from their value in the
previous stage.

Chapter 4. Element Action Statements 4-91

4.15 The Transfer Statement

■ Set the source delta CCID and/or COMMENT fields from their value at
the target of the transfer, with a sync flag.

If you use BYPASS GENERATE PROCESSOR, the TRANSFER action will
not set the generate or component list delta CCID and/or COMMENT fields.

NEW VERSION version—By default, the version number of the FROM
location element—at the time it is transferred—is assigned to the TO location
element. Use this option to assign a different version number to the TO
location element; simply enter the number (1-99 inclusive, leading zeros
optional) that you want to use.

Endevor allows only one version of an element at each location. Therefore, if
the element currently exists at the target location, you cannot update it with
another version. For example, if you try to transfer Version 2 of an element
to a target location that already has an existing Version 1, you must archive
or delete the current Version 1 before you transfer the Version 2.

IGNORE GENERATE FAILED—This option applies to the *FAILED* flag
previously set for the element. If the TRANSFER action is unsuccessful, you
receive a message indicating that "the generate failed." Processing for the
action normally is terminated at this point.

If you enter this option, however, you can perform the action whether or not
the element was previously generated or moved successfully.

BYPASS GENERATE PROCESSOR—Select this option if you do not want
the generate/move processor (depending on the processor group option
chosen) executed for the element.

PROCESSOR GROUP group name—Select this option to specify a
predefined named group of processors. If you do not specify a processor
group, Endevor defaults to the processor group last used for this element.

If the FROM element is associated with a processor group that does not
specify BYPASS GENERATE PROCESSOR, the processor group may be
overridden with the processor group clause. Otherwise, a message will be
issued saying that the processor group cannot be overridden.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform the this
action. Use OVERRIDE SIGNOUT with caution to avoid regressing changes
made by another user.

BYPASS ELEMENT DELETE—This option tells Endevor to retain the
element in the FROM location after it is transferred. When you select this
option, the delete processor is also bypassed.

4-92 SCL Reference Guide

4.15 The Transfer Statement

BYPASS DELETE PROCESSOR—If you select this option, Endevor does
not execute the delete processor.

WITH HISTORY—The WITH HISTORY option preserves source element
change history. If you request TRANSFER WITH HISTORY, Endevor first
ensures that the current level of the target element is the same as the base
level of the source element. It then transfers all levels of the element from
source to target, appending the source change history to the target change
history.

If you do not code this option, Endevor transfers the element(s) without
history. When you transfer the element without history Endevor searches
through the element levels at the source location to find a matching level at
the target location. Endevor then compares the two and creates a new level at
the target location that reflects the differences.

If the base level of the source element differs from the current level at the
target, the TRANSFER fails unless you code the SYNCHRONIZE option.

SYNCHRONIZE— The SYNCHRONIZE option compensates for differences
between the base level of a source element and the current level of a target
element. Endevor attempts to find a sync level between the source and target
elements beginning with the first level of the source and works forward
through the deltas. If Endevor finds a sync level, it compares the two and
creates a new level at the target that reflects the differences. If Endevor
cannot find a sync level and you specify SYNC, Endevor issues an out of
sync message. Endevor then compares the last level of the source and last
level of the target, and creates a new level at the target that reflects the
differences. When moving with history, if the sync point is found, Endevor
moves the element from the FROM location to the TO location, appending
the FROM location delta levels after the sync-point element. If the two levels
are different, and SYNC is specified, Endevor first creates a sync level at the
target reflecting the differences between the base level of the FROM element
and the target , then moves the element to the TO location and appends the
FROM location delta levels to the target.

SIGNIN—This option tells Endevor to sign in all elements at the target stage
after successfully completing the move. Use this option to override SET
OPTION RETAIN SIGNOUT or SET OPTION SIGNOUT TO clauses.

Chapter 4. Element Action Statements 4-93

4.15 The Transfer Statement

RETAIN SIGNOUT—This option tells Endevor to retain the source location
signouts for all elements at the target location. This option applies only if the
element was signed out at the source before the TRANSFER.

■ If the element was signed out at the source before the TRANSFER, it
will be signed out to that same ID—at the target—after the TRANSFER.

■ If the element was not signed out at the source before the TRANSFER, it
will not be signed out at the target after the TRANSFER.

■ If you do not use this option, the element at the target location is not
signed out, regardless of whether it was signed out at the target before the
TRANSFER took place.

SIGNOUT TO userid—This option tells Endevor to sign all elements out to
the specified user ID at the target stage.

4-94 SCL Reference Guide

4.15 The Transfer Statement

4.15.4 Transfer from Endevor to Archive Data Set Statement

The TRANSFER FROM Endevor TO ARCHIVE DATA SET statement
transfers elements from Endevor to an archive data set.

 4.15.5 Syntax

��──TRAnsfer ELEment──element-name─ ──┬ ┬────────────────── ──────�
 └ ┘ ─VERsion──version─

�─ ──┬ ┬────────────── ──┬ ┬─────────────────────────── ────────────�
 └ ┘ ─LEVel──level─ └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRU────

�──FROm──┤ DEF ├─ ─TO─ ──┬ ┬─FILe─── ─dd-name──────────────────────�
 └ ┘─DDName─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.───────��
 └ ┘ ─OPTION──¤─ ──┬ ┬───────────────────────────── ─¤─
 ├ ┤─CCId──ccid──────────────────
 ├ ┤─COMment──comment────────────
 ├ ┤─NEW VERsion──version────────

├ ┤─IGNore generate failed──────
 ├ ┤─OVErride SIGNOut────────────
 └ ┘──┬ ┬─BYPass ELEment DELete───

└ ┘─BYPass DELete PROcessor─

DEF:
├─ ─ENVironment──environment-name──SYStem──system-name──────────�

�─ ─SUBSYStem──subsystem-name──TYPe──type-name──────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─────────────────────────────────┤
 └ ┘ ─STAge NUMber──stage-no─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group name─ ─)───────────────┤

 └ ┘─=──

Chapter 4. Element Action Statements 4-95

4.15 The Transfer Statement

 4.15.5.1 Syntax Rules

TRANSFER ELEMENT element-name

Indicates the element(s) to be transferred. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name.

VERSION

Identifies the version (1-99) of the element you want to transfer. If you use
this clause you must specify a full element name.

LEVEL

Identifies the level (00-99) of the element you want to transfer. If you use
the LEVEL clause you:

■ Cannot use the THROUGH clause.

■ Must specify a full element name.

If you do not specify a LEVEL clause, the Transfer action transfers all levels
to the target location. If you specify this clause, Endevor only transfers the
level you indicate.

If the specified level is not the current level, the execution of the generate
processor at the target location is forced, regardless of the setting specified by
the processor group definition.

THROUGH (THRU) element-name

Indicates that a range of elements should be transferred, beginning with the
element coded in the TRANSFER ELEMENT statement, up to and including
the element specified in this statement. You can use a name mask with the
element name.

FROM ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no

The FROM clause indicates the location of the element being transferred.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

4-96 SCL Reference Guide

4.15 The Transfer Statement

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

Chapter 4. Element Action Statements 4-97

4.15 The Transfer Statement

You must specify an environment, system, subsystem, type, and stage. The
environment name must be explicit. You can use a name mask with the
system, subsystem, type, and stage. The stage specification can be either one
of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

TO FILE (DDNAME) dd-name

The TO clause indicates the file or DDname to which the element is being
transferred. Endevor uses both the TO clause in an action and any preceding
SET TO clause to determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

The DCB must specify variable blocked records (RECFM=VB), a minimum
LRECL of 1021, DSORG=PS, and a block size greater than 1025. When
archiving to tape, the recommended block size is 32,000.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID OF ccid —Limits the processing to those elements that
match one of the supplied CCIDs. You can use a name mask in this field.

■ CURRENT—Tells Endevor to look through the CCID fields in the MCF
(Master Control File) to find a specified CCID(s). This is the default.

4-98 SCL Reference Guide

4.15 The Transfer Statement

■ ALL—Tells Endevor to search both the Master Control File and the
SOURCE DELTA levels for a specified CCID(s). If you have ACM,
Endevor also searches the COMPONENT LIST DELTA levels for the
specified CCID(s).

■ RETRIEVE—Tells Endevor to use the CCID in the Master Control File
RETRIEVE CCID field.

If you need to select elements identified under more than one CCID, you
can specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple
lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE CCID OF CURRENT (PROJ��1, PROJ��2, PROJ��4)

Example 2: WHERE CCID OF ALL (PROJ��V)

WHERE PROCESSOR GROUP group name—This clause allows you
to select elements according to a specified processor group. You can use
a name mask when specifying the processor group name.

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if
necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

OPTIONS

OPTIONS clauses allow you to further specify action requests.

CCID ccid/COMMENT comment—You can enter a 1- to 12-character
CCID and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a
required CCID and/or comment, the TRANSFER action fails.

When you specify a CCID and/or comment in a TRANSFER action,
Endevor updates CCID and/or COMMENT fields differently depending
on whether you specify the TRANSFER request without history, with
history, or with synchronization.

When you specify a CCID and/or comment in a TRANSFER action
without history, Endevor uses this CCID and/or comment to:

– Set the generate and component list delta CCID and/or COMMENT
fields if the generate processor is run.

– Set the last action CCID and/or COMMENT fields.

 – Endevor also:

– Clears the retrieve CCID and/or COMMENT fields.

Chapter 4. Element Action Statements 4-99

4.15 The Transfer Statement

– Sets the source CCID and/or COMMENT fields from their value in
the previous stage.

– Sets the source delta CCID and/or COMMENT fields from their last
delta value in the previous stage.

When you specify a CCID and/or comment in a TRANSFER action
using the WITH HISTORY option, Endevor uses this CCID and/or
comment to:

– Set the generate and component list delta CCID and/or COMMENT
fields if the generate processor is run.

– Set the last action CCID and/or COMMENT fields.

 – Endevor also:

– Clears the retrieve CCID and/or COMMENT fields.

– Sets the source CCID and/or COMMENT fields from their value in
the previous stage.

– Moves source delta CCIDs and COMMENTS with their respective
delta levels.

When you specify a CCID and/or comment in a TRANSFER action
using the SYNCHRONIZE option, Endevor uses this CCID and/or
comment to:

– Set the retrieve CCID and/or COMMENT fields.

– Set the source CCID and/or COMMENT fields from their value in
the previous stage.

– Set the source delta CCID and/or COMMENT fields from their value
at the target of the TRANSFER with a sync flag.

BYPASS ELEMENT DELETE—This option tells Endevor to retain the
element in the FROM location after it is transferred. When you select this
option, the delete processor is also bypassed.

BYPASS DELETE PROCESSOR—If you select this option, Endevor does
not execute the delete processor.

IGNORE GENERATE FAILED—This option applies to the *FAILED* flag
previously set for the element. If the TRANSFER action is unsuccessful, you
receive a message indicating that "the generate failed." Processing for the
action normally is terminated at this point.

If you enter this option, however, you can perform the action whether or not
the element was previously generated or moved successfully.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.

4-100 SCL Reference Guide

4.15 The Transfer Statement

Use OVERRIDE SIGNOUT with caution to avoid regressing changes made
by another user.

Chapter 4. Element Action Statements 4-101

4.15 The Transfer Statement

4.15.6 Transfer from Archive Data Set or Unload Tape to Endevor
Statement

The ARCHIVE/UNLOAD DATA SET TO Endevor statement transfers
elements from an archive data set or an unload tape to Endevor.

 4.15.7 Syntax

4-102 SCL Reference Guide

4.15 The Transfer Statement

��──TRAnsfer ELEment──element-name─ ──┬ ┬────────────────── ──┬ ┬────────────── ─────�
 └ ┘ ─VERsion──version─ └ ┘ ─LEVel──level─

�─ ──┬ ┬─────────────────────────── ─FROm──┤ DEF ├─────────────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRU────

�──TO──┤ DEF ├──ELEment──element-name───�

�─ ──┬ ┬── ────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬───────────────────────────────── ─¤─

├ ┤─┤ CCID ├────────────────────────
├ ┤─┤ PRO ├─────────────────────────

 └ ┘─ARChive─ ──┬ ┬─┤ DATE ├───────────
├ ┤─┤ FROM ├───────────
├ ┤─┤ THROUGH ├────────
└ ┘─┤ FROM - THROUGH ├─

�─ ──┬ ┬─── ─.────────────��
 └ ┘ ─OPTION──¤─ ──┬ ┬─── ─¤─
 ├ ┤─CCId──ccid──────────────────────────────
 ├ ┤─COMment──comment────────────────────────
 ├ ┤─NEW VERsion──version────────────────────
 ├ ┤─OVErride SIGNOut────────────────────────

├ ┤──┬ ┬─BYPass GENerate PROcessor───────────
 │ │└ ┘ ─PROcessor GROup─ ──┬ ┬─EQ─ ─group-name─
 │ │└ ┘─=──
 ├ ┤─WITh HIStory────────────────────────────
 ├ ┤─SYNchronize─────────────────────────────
 │ │┌ ┐─SIGnin─────────────
 └ ┘──┼ ┼─RETain SIGNOut───── ─────────────────
 └ ┘ ─SIGNOut TO──userid─

DEF:
├─ ──┬ ┬─FILe─── ─ddname─ ─ENVIronment──environment-name──SYStem──system-name───────�
 └ ┘─DDName─

�─ ─SUBSYStem──subsystem-name─ ─TYPe──type-name─ ──┬ ┬─STAge──stage-id──────── ──────┤
 └ ┘ ─STAge NUMber──stage-no─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)──┤
 └ ┘─=─────

 DATE:
├─ ─DATe─ ──┬ ┬──── ─date─ ──┬ ┬──────────────────── ──────────────────────────────────┤

 ├ ┤─EQ─ └ ┘ ─TIMe─ ──┬ ┬──── ─time─
 └ ┘─=── ├ ┤─EQ─

 └ ┘─=──

FROM:
├─ ─FROm──DATe─ ──┬ ┬──── ─date─ ──┬ ┬──────────────────── ────────────────────────────┤
 ├ ┤─EQ─ └ ┘ ─TIMe─ ──┬ ┬──── ─time─
 └ ┘─=── ├ ┤─EQ─
 └ ┘─=──

THROUGH:
├─ ──┬ ┬───────── ─DATe─ ──┬ ┬─EQ─ ─date─ ──┬ ┬──────────────────── ─────────────────────┤
 ├ ┤─THRough─ └ ┘─=── └ ┘ ─TIMe─ ──┬ ┬──── ─time─
 └ ┘─THRu──── ├ ┤─EQ─
 └ ┘─=──

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

┴─group-name─ ─)────────────────────────────────┤

 └ ┘─=──

Chapter 4. Element Action Statements 4-103

4.15 The Transfer Statement

 4.15.7.1 Syntax Rules

TRANSFER ELEMENT element-name

Indicates the element(s) to be transferred. Code the required syntax and enter
the appropriate element name; up to 10 characters are allowed. In addition,
you can use a name mask with the element name.

VERSION

Identifies the version (1-99) of the element you want to transfer. If you use
this clause you must specify a full element name.

LEVEL

Identifies the level (00-99) of the element you want to transfer. If you use
the LEVEL clause you:

■ Cannot use the THROUGH clause.

■ Must specify a full element name.

If you do not specify a LEVEL clause, the Transfer action transfers all levels
to the target location. If you specify this clause, Endevor only transfers the
level you indicate.

If the specified level is not the current level, the execution of the generate
processor at the target location is forced, regardless of the setting specified by
the processor group definition.

THROUGH (THRU) element-name

Indicates that a range of elements should be transferred, beginning with the
element coded in the TRANSFER ELEMENT statement, up to and including
the element specified in this statement. You can use a name mask with the
element name.

FROM FILE (DDNAME) dd-name
 ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name

STAGE NUMBER stage-no

The FROM clause indicates the location of the element to be transferred.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

4-104 SCL Reference Guide

4.15 The Transfer Statement

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must code a FILE or DDNAME for this request, indicating the archive
data set from which the element is being transferred. Enter this information
first when coding the syntax.

You must specify an environment, system, subsystem, type, and stage number
(either 1 or 2). The environment name must be explicit. You can use a name
mask with the system, subsystem, and type names, as well as the stage
number.

Entering a site ID is optional. This field further defines the location of the
element being transferred.

TO ENVIRONMENT env-name
 SYSTEM system-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

STAGE NUMBER stage-no
 ELEMENT element-name

The TO clause indicates the Endevor location to which the element is being
transferred. Endevor uses both the TO clause in an action and any preceding
SET TO clause to determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

If no SET TO clause has been coded and the TO clause system, subsystem,
type, or element fields are not coded, these fields will default to the
corresponding values coded in the FROM clause.

Note: The target environment and stage values must be explicitly coded in
the TO clause or SET TO clause. Wildcarding and name masking are not
allowed for any of the TO clause fields.

You must specify an environment, system, subsystem, type, and stage. The
stage specification can be either one of the following:

■ STAGE ID—Enter a single alphanumeric stage identifier.

■ STAGE NUMBER—Enter either 1 or 2.

Chapter 4. Element Action Statements 4-105

4.15 The Transfer Statement

Remember that you cannot use a name mask with a TO field location.

Enter a different element name if you want to change the element name
specified in the TRANSFER ELEMENT clause. If you do not enter an
element name here, Endevor uses the archived element name.

■ You can enter a new element name only if a full element name was
coded in the TRANSFER ELEMENT clause; that is, if you have not used
a name mask.

■ If you want to code a different element name, you must do so in the
TRANSFER statement; the SET TO MEMBER clause does not apply to
this action.

WHERE

Use WHERE clauses to further qualify element selection criteria. Endevor
uses both the WHERE clause in an action and any preceding SET WHERE
clause to determine the "where" criteria for that action.

■ A WHERE clause in an action overrides values in a SET WHERE clause
that precedes the action.

■ If the SET WHERE clause contains values that are not included in the
WHERE clause, Endevor uses these values.

See the description of the SET WHERE statement, in Chapter 3, "Set, Clear,
and EOF Statements," for more information.

WHERE CCID ccid —Limits the processing to those elements that match
one of the supplied CCIDs. You can use a name mask in this field.

If you need to select elements identified under more than one CCID, you can
specify multiple CCIDs by enclosing the CCIDs with parentheses and
separating them with commas. The CCIDs may extend over multiple lines if
necessary.

4-106 SCL Reference Guide

4.15 The Transfer Statement

The examples below illustrate the use of this clause.

Example 1: WHERE CCID EQ PROJ��V

Example 2: WHERE CCID (PROJ��1, PROJ��2, PROJ��4)

WHERE ARCHIVE—This clause allows you to select elements based on the
date and, optionally, time that an element was archived. There are four
possible forms for this clause:

■ WHERE ARCHIVE DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to archive only those elements with this date,
and optionally, this time stamp.

■ WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to archive all elements with a date and,
optionally, a time stamp on or after the specified date and time stamps.

■ WHERE ARCHIVE THROUGH DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to archive all elements with a date and,
optionally, a time stamp earlier than and including the specified date and
time stamp.

■ WHERE ARCHIVE FROM DATE mm/dd/yy [TIME hh:mm]
THROUGH DATE mm/dd/yy [TIME hh:mm]

■ This clause tells Endevor to archive only those elements with a date, and
optionally, a time stamp within the specified range. If you enter a time,
you must enter the date with it.

WHERE PROCESSOR GROUP group name—This clause is not valid
when transferring from an archive data set. This clause allows you to select
elements according to a specified processor group. You can use a name mask
when specifying the processor group name

If you need to select elements identified under more than one processor
group, you can specify multiple distinct processor group selectors by
enclosing the processor groups with parentheses and separating them with
commas. The processor groups may extend over multiple lines if necessary.

The examples below illustrate the use of this clause.

Example 1: WHERE PROCESSOR GROUP (COBVS, COBII)

Example 2: WHERE PROCESSOR GROUP (COBV)

OPTIONS

OPTIONS clauses allow you to further specify action requests.

CCID ccid/COMMENT comment—You can enter a 1- to 12-character CCID
and/or a 1- to 40-character comment.

Chapter 4. Element Action Statements 4-107

4.15 The Transfer Statement

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the TRANSFER action fails.

When you specify a CCID and/or comment in a TRANSFER action, Endevor
updates CCID and/or COMMENT fields differently, depending on whether
you specify the TRANSFER request without history, with history, or with
synchronization.

If you use the BYPASS GENERATE PROCESSOR option, the TRANSFER
action does not set the generate or component list delta CCID and/or
COMMENT fields.

When you specify a CCID and/or comment in a TRANSFER action without
history, Endevor uses this CCID and/or comment to:

■ Set the generate and component list delta CCID and/or COMMENT fields
if the generate processor is run.

■ Set the last action CCID and/or COMMENT fields.

 ■ Endevor also:

■ Clears the retrieve CCID and/or COMMENT fields.

■ Sets the source CCID and /or COMMENT fields from their value in the
previous stage.

■ Sets the source delta CCID and/or COMMENT fields from their last delta
value in the previous stage.

When you specify a CCID and/or comment in a TRANSFER action using the
WITH HISTORY option, Endevor uses the CCID and/or comment to:

■ Set the generate and component list delta CCID and/or COMMENT fields
if the generate processor is run.

■ Set the last action CCID and/or COMMENT fields.

 ■ Endevor also:

■ Clears the retrieve CCID and/or COMMENT fields.

■ Sets the source CCID and/or COMMENT fields from their value in the
previous stage.

■ Moves source delta CCIDs and COMMENTs with their respective delta
levels.

■ When you specify a CCID and/or comment in a TRANSFER action using
the SYNCHRONIZE option, Endevor uses this CCID and/or comment to:

■ Set the retrieve CCID and/or COMMENT fields.

■ Set the source CCID and/or COMMENT fields from their value in the
previous stage.

4-108 SCL Reference Guide

4.15 The Transfer Statement

■ Set the source delta CCID and/or COMMENT fields from their value at
the target of the transfer, with a sync flag.

NEW VERSION version—Use this option to assign a different version
number to the TO location element. Acceptable values are 1-99.

Endevor allows only one version of an element at each location. For
example, if you try to transfer Version 2 of an element to a target location
that already has an existing Version 1, you must archive or delete the current
Version 1 before you transfer the Version 2.

OVERRIDE SIGNOUT—If the element is signed out to another person, you
must code this option in order to perform this action. Use OVERRIDE
SIGNOUT with caution to avoid regressing changes made by another user.

BYPASS GENERATE PROCESSOR—Use this option if you do not want
the generate processor executed for the element. Otherwise, Endevor looks
for and executes the generate processor for the element when it is transferred.

PROCESSOR GROUP group name—Select this option to specify a
predefined named group of processors. If you do not specify a processor
group, Endevor defaults to the processor group last used for this element.

WITH HISTORY—The WITH HISTORY option preserves source element
change history. If you request TRANSFER WITH HISTORY, Endevor first
ensures that the current level of the target element is the same as the base
level of the source element. It then transfers all levels of the element from
source to target, appending the source change history to the target change
history.

If you do not code this option, Endevor transfers the element(s) without
history. When you transfer the element without history Endevor searches
through the element levels at the source location to find a matching level at
the target location. Endevor then compares the two and creates a new level at
the target location that reflects the differences.

If the base level of the source element differs from the current level at the
target, the transfer fails unless you code the SYNCHRONIZE option.

SYNCHRONIZE—When transferring either with or without history, the
SYNCHRONIZE option compensates for differences between the base level
of a source element and the current level of a target element. If these levels
differ, the SYNCHRONIZE option tells Endevor to create a new level at the
target that reflects the differences.

After creating the sync level, Endevor transfers the element(s), either with or
without history.

Chapter 4. Element Action Statements 4-109

4.15 The Transfer Statement

SIGNIN—This option tells Endevor to sign in all elements at the target stage.
Use this option to override SET OPTION RETAIN SIGNOUT or SET
OPTION SIGNOUT TO clauses.

RETAIN SIGNOUT—This option tells Endevor to retain the source location
signouts for all elements at the target location. This option applies only if the
element was signed out at the source before the TRANSFER.

■ If the element was signed out at the source before the TRANSFER, it
will be signed out to that same ID—at the target—after the TRANSFER.

■ If the element was not signed out at the source before the TRANSFER, it
will not be signed out at the target after the TRANSFER.

■ If you do not use this option, the element at the target location is not
signed out, regardless of whether it was signed out at the target before the
TRANSFER took place.

SIGNOUT TO userid—This option tells Endevor to sign all elements out to
the specified user ID at the target stage.

4-110 SCL Reference Guide

4.15 The Transfer Statement

4.15.8 Example of Transfer SCL

The following is an example of TRANSFER SCL. This SCL transfers all of
the "PAYRPT*" COBOL elements to the NEWREPRT subsystem. All
element history will be retained, and the signout status can be overridden, if
necessary.

TRANSFER ELEMENT 'PAYRPT�'

 FROM ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

STAGE NUMBER 1

 TO ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'NEWREPRT'

 TYPE 'COBOL'

 STAGE NUMBER 1

 OPTIONS CCID REQ#44�18

COMMENT 'MOVE REPORTING SUBSYSTEM PROGRAMS'

 WITH HISTORY

OVERRIDE SIGNOUT .

Chapter 4. Element Action Statements 4-111

4.15 The Transfer Statement

4.16 The Update Statement

 4.16.1 Overview

The UPDATE statement updates an element in Stage 1, thereby creating a
new level for the element in Stage 1. Elements are updated only if there are
differences between the incoming source in the FROM location and the target
Stage 1 source.

 4.16.2 Syntax

��──UPDate ELEment──element-name─ ──┬ ┬─────────────────────────── ───────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─FROm─ ──┬ ┬ ──┬ ┬─FILe─── ─dd-name─────────────────────────── ────────────�
 │ │└ ┘─DDName─
 ├ ┤ ─DSName──dataset-name─ ──┬ ┬─────────────────────
 │ │└ ┘ ─MEMber──member-name─
 └ ┘─PATH──hfspath──HFSFILE──filename──────────────

�─ ─TO─ ─ENVironment──env-name──SYStem──sys-name─────────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────────────�

�─ ──┬ ┬── ───�
 └ ┘ ─OPTion──¤─ ──┬ ┬── ─¤─
 ├ ┤─CCId──ccid─────────────────────────────────
 ├ ┤─COMment──comment───────────────────────────

├ ┤─DELete input source────────────────────────
 ├ ┤─OVErride SIGNOut───────────────────────────

└ ┘──┬ ┬─BYPass GENerate PROcessor──────────────
 └ ┘ ─PROcessor GROup─ ──┬ ┬─EQual─ ─group name─
 └ ┘─=─────

�──.──��

 4.16.2.1 Syntax Rules

UPDATE ELEMENT element-name

Indicates the element(s) to be updated. Code the required syntax and enter
the appropriate element name; up to 255 characters are allowed. In addition,
you can use a name mask with the element name.

THROUGH (THRU) element-name

Indicates that a range of elements should be updated, beginning with the
element coded in the UPDATE ELEMENT statement, up to and including the
element specified in this statement. You can use a name mask with the
element name. If you use the THROUGH clause, however, you cannot enter
a member name (in the FROM clause).

4-112 SCL Reference Guide

4.16 The Update Statement

Note: If you are working with a sequential file, the THROUGH clause is
ignored.

FROM FILE (DDNAME) dd-name
 DSNAME dataset-name
 MEMBER member-name

 PATH hfspath
 HFSFILE filename

The FROM clause indicates the location of the element being updated.
Endevor uses both the FROM clause in an action and any preceding SET
FROM clause to determine the "from" criteria for that action.

■ A FROM clause in an action overrides values in a SET FROM clause
that precedes the action.

■ If the SET FROM clause contains values that are not included in the
FROM clause, Endevor uses these values.

See the description of the SET FROM statement, in Chapter 3, "Set Clear,
and EOF Statements," for more information.

You must enter a FILE, DDNAME, DSNAME, or PATH in conjunction with
the HFSFILE (enter one and only one). If you enter a FILE or DDNAME, be
sure the appropriate JCL is coded.

Chapter 4. Element Action Statements 4-113

4.16 The Update Statement

Enter a member name (up to 255 characters) if it differs from the element
name specified in the UPDATE ELEMENT clause; you can use a name mask
with this entry. If you do not enter a member name, Endevor assumes that
the element name and member name are the same.

■ You can enter a member name only if a full element name has been
coded in the UPDATE ELEMENT clause; that is, if you have not used a
name mask.

■ If you want to code a member name, you must do so in the UPDATE
statement; the SET FROM clause does not contain a member name entry.
If you do enter a member name, you cannot enter a THROUGH clause.

■ If you are working with a sequential file, the MEMBER clause is
ignored.

PATH

The HFS directory where the element source file resides.

HFSFILE

The file in the HFS directory that you want to put under the control of
Endevor.

For more information see 1.6.1, “HFSFile Syntax Rules” on page 1-21. the
beginning of this chapter.

TO ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name

The TO clause indicates where the element is being updated. Endevor uses
both the TO clause in an action and any preceding SET TO clause to
determine the "to" criteria for that action.

■ A TO clause in an action overrides values in a SET TO clause that
precedes the action.

■ If the SET TO clause contains values that are not included in the TO
clause, Endevor uses these values.

See the description of the SET TO statement, in Chapter 3, "Set Clear, and
EOF Statements," for more information.

You must specify an environment, system, subsystem, and type. Remember
that you cannot use a name mask with a TO field location.

OPTIONS

OPTIONS clauses allow you to further specify action requests.

4-114 SCL Reference Guide

4.16 The Update Statement

CCID ccid/COMMENT comment—You can enter a 1- to 12-character CCID
and/or a 1- to 40-character comment.

CCIDs and/or comments may be required. If you do not provide a required
CCID and/or comment, the UPDATE action fails.

When you specify a CCID and/or comment in an UPDATE action for an
existing element, Endevor uses this CCID and/or comment to:

■ Set the source and source delta CCID and/or COMMENT fields if the
CCID and/or comment have changed.

■ Set the generate CCID and/or COMMENT fields if the generate processor
is run.

■ Set the component list delta CCID and/or COMMENT fields if running
the generate processor creates a change.

■ Set the last action CCID and/or COMMENT fields.

Endevor also clears the Stage 1 retrieve CCID and/or COMMENT fields
when you update an element. If you use the BYPASS GENERATE
PROCESSOR option, the UPDATE action will not set the generate or
component delta CCID and/or COMMENT fields.

DELETE INPUT SOURCE—After an element has been successfully
updated in Endevor, you can use this option to remove the member from the
library in which it originated.

If you input a sequential file, this option deletes that file.

OVERRIDE SIGNOUT—If the element has been signed out to a person
other than yourself, you must code this option in order to perform this action.
Use OVERRIDE SIGNOUT with caution to avoid regressing changes made
by another user.

BYPASS GENERATE PROCESSOR—Use this option if you do not want
the generate processor executed for the element. Otherwise, Endevor looks
for and executes the generate processor for the element when it is updated.

PROCESSOR GROUP group name—Use this option to specify a predefined
named group of processors. If you do not specify a processor group, Endevor
defaults to the processor group last used for this element.

4.16.3 Example of Update SCL

The following is an example of UPDATE SCL. This SCL modifies the
Payroll Reporting program "PAYRPT23." After the update is complete, the
source member will be deleted.

Chapter 4. Element Action Statements 4-115

4.16 The Update Statement

UPDATE ELEMENT 'PAYRPT23'

 TO ENVIRONMENT 'PROD'

 SYSTEM 'PAYROLL'

 SUBSYSTEM 'REPORTS'

 TYPE 'COBOL'

 FROM DSNAME 'PAYROLL.SRCLIB'

 OPTIONS DELETE INPUT SOURCE

 CCID REQ#42976

COMMENT 'CHANGES FOR NEW REPORTING REQUIREMENTS' .

4-116 SCL Reference Guide

Chapter 5. Batch Package SCL

This chapter describes the SCL needed to manage packages in batch. It
contains discussions of the Batch Package facility, execution of the Batch
Package facility, and the Batch Package actions.

Chapter 5. Batch Package SCL 5-1

5.1 Batch Package Facility

5.1 Batch Package Facility

Endevor's Batch Package Facility provides you with the ability to execute all
package actions in batch mode. In addition, the Endevor Batch Package
Facility:

■ Supports all foreground package actions. See the Packages Guide for
information on package processing.

■ Provides the additional actions SUBMIT, ARCHIVE, and INSPECT.

■ Has the same package status requirements as those used in foreground.
See the Packages Guide for information on package status requirements.

■ Supports before- and after-package exits.

■ Invokes the GENPKGID exit, if installed, to generate a new package ID.
See the Exits Guide for information on package exits.

5.1.1 Summary of Batch Package Actions

The following table summarizes Endevor batch package actions, their required
status and exits supported.

Action Description Required Status Exits Before Supported
After

Approve
Package

Approves a package for execution. ■ In-approval.

 ■ Denied.

X X

Archive
Package

Copies the package definitions to an
external data set.

■ Execute if backouts
exist.

 ■ Committed if
backout is enabled.

X X

Backin
Package

Backs a package in, reversing the
BACKOUT PACKAGE action.

 ■ Executed. X X

Backout
Package

Backouts package changes.
Restores output modules to
pre-execution state.

 ■ Executed.

 ■ In-execution.

 ■ Exec-failed.

X X

Cast
Package

Casts a package, which freezes the
data and prevents further changes.
For a list of Cast validations, please
see the section titled "Validations
for Cast and Inspect" in the
Packages Guide.

 ■ In-Edit. X X

5-2 SCL Reference Guide

5.1 Batch Package Facility

Action Description Required Status Exits Before Supported
After

Commit
Package

Commits a package removing all
backout/backin data, but retaining
package event information.

 ■ Executed. X X

Define
Package

Creates a new or updates an
existing package.

■ In-edit for an
existing package.

X X

Delete
Package

Deletes an entire package from
Endevor.

 ■ Any status. X X

Deny
Package

Denies execution of a package. ■ In-approval. X X

Execute
Package

Executes a package. ■ Approved.

 ■ Exec-failed.

X X

Export
Package

Writes the SCL associated with a
package to an external data set.

 ■ Any status. X X

Inspect The Inspect action checks each
element for security, signout, and
synchronization conflicts and source
changes and reports on the changes
in element status that might effect
the successful execution of the
package. For a list of Inspect
validations, please see the section
titled "Validations for Cast and
Inspect" in the Packages Guide.

 ■ Approved.

 ■ In-execution.

 ■ Exec-failed.

Reset
Package

Resets a package back to a status of
In-edit.

 ■ Any status. X X

Submit
Package

Submits a JCL job stream to
execute one or more packages.

 ■ Approved.

■ Executed if the
WHERE
PACKAGE
STATUS IS
EXECFAILED
clause is specified
and if the package
execution has
previously failed.

Chapter 5. Batch Package SCL 5-3

5.1 Batch Package Facility

5.1.2 Batch Package Actions and Wildcarding

You can use wildcard package IDs for the following package actions:

 ■ Archive

 ■ Cast

 ■ Commit

 ■ Delete

 ■ Execute

 ■ Submit

When you wildcard a package ID, Endevor selects packages against which
you are authorized to perform actions. It is possible that a package ID
matches the wildcard you specify but is not selected for the following reasons:

■ The package is in the wrong state for the action selected.

■ The package is non-sharable and you are not the owner of the package.

■ The package has one or more approvers associated with it of which you
are not member.

 Note that SCL inside of packages may not contain any wildcards.

5-4 SCL Reference Guide

5.2 Batch Package Facility Execution

5.2 Batch Package Facility Execution

 5.2.1 Overview

The Batch Package Facility, program ENBP1000, performs package actions
by executing SCL statements specified in the ENPSCLIN DD statement. See
Chapter 2, "About the SCL Language," of this manual for information on
SCL coding conventions. The following general rules apply to ENBP1000
execution:

■ There is no defined limit to the number of package actions the facility
can process.

■ There is no defined limit to the number of SCL statements that you can
specify.

■ Statements are executed in the sequence provided.

■ Statements are parsed before any package actions are executed.

■ If parse errors are detected, none of the actions are executed.

■ Actions are processed as long as the action return code is 12 or less. If a
return of greater than 12 is received, all remaining actions are bypassed.

■ If the same clause is specified multiple times in a statement, the last
clause specified is the one used.

 5.2.2 Execution JCL

Below is an example of the JCL you use to invoke the Batch Package
Facility.

Chapter 5. Batch Package SCL 5-5

5.2 Batch Package Facility Execution

//ENBP1��� EXEC PGM=NDVRC1,PARM='ENBP1���'

//STEPLIB DD DSN=iprfx.iqual.AUTHLIB,

// DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,

// DISP=SHR

//C1MSGS1 DD SYSOUT=�

//��

//� Uncomment the C1MSGS2 DD Statement if you want �

//� the Summary Report written to this location. By�

//� default the summary is written to C1MSGS1. �

//��

//�C1MSGS2 DD SYSOUT=�

//SYSTERM DD SYSOUT=�

//SYSPRINT DD SYSOUT=�

//SYSABEND DD SYSOUT=�

//��

//� The following 2 DD statements are used only by �

//� SUBMIT PACKAGE action. �

//��

//JCLIN DD DSN=iprfx.iqual.JCLLIB(JOBCARD),

// DISP=SHR

//JCLOUT DD SYSOUT=(A,INTRDR),

// DCB=(LRECL=8�,RECFM=F,BLKSIZE=8�)

//ENPSCLIN DD �

DD Statement Descriptions

DD Statement Description

ENPSCLIN Defines the Batch Package Facility control statements. The DD statement can refer to
instream data, a sequential data set, or a partitioned data set with an explicit member.

Where a partitioned data set option is used, only one archive action permitted. You
may archive multiple packages, however it must be done in the same command. If
you use a separate archive action for each package being archived, only the last
package in the PDS member will appear. For example:

Archive Package to DDN ddname

Options where older than N days will archive all eligible packages to a PDS member.
Whereas the SCL:

Archive Package A to DDN ddname

Archive Package B to DDN ddname

will result in only package B residing in the Archive file.

If the ENPSCLIN DD statement refers to a data set, the data set must have either
fixed length or variable length records. If the records are fixed length, the record
length must be exactly 80. If the records are variable length, the record length must
be at least 84.

If any of the data set attributes are incorrect, an error message is written and a return
code 12 is set.

5-6 SCL Reference Guide

5.2 Batch Package Facility Execution

DD Statement Description

C1MSGS1 Defines the destination of the Batch Package Facility execution reports. You can
write the Batch Package Facility Summary report to a different location by
uncommenting the C1MSGS2 DD statement in the sample JCL.

JCLIN Identifies the default location of the JCL jobcard to be used by the SUBMIT
PACKAGE action. The data set can be a sequential data set or a partitioned data set
with an explicit member. The DD statement is used only with the SUBMIT
PACKAGE action.

JCLOUT Identifies the default output of the SUBMIT PACKAGE action. Generally, the DD
statement refers to an internal reader but it can also refer to a sequential data set or a
partitioned data set with a explicit member name. The DD statement is used only
with the SUBMIT PACKAGE action.

5.2.3 Validating Input SCL

You can check the syntax of your SCL statements before submitting them for
execution by using an optional parameter of VALIDATE on the JCL PARM
statement. When you specify the VALIDATE parameter, the statements in
the ENPSCLIN DD statement are parsed. The statements are not executed.
To specify the VALIDATE parameter, change the PARM= statement on the
sample JCL to PARM='ENBP1000VALIDATE'.

 5.2.4 Return Codes

The Batch Package Facility passes one of the following return codes after
execution is complete:

Return Code Meaning

0 All actions were performed successfully.

4 One or more actions completed with a warning message.

8 One or more actions completed with a caution message.

12 One or more action completed with an error message. The action may not have
completed successfully.

16 An unrecoverable error occurred.

20 The C1MSGS1 DD statement was not allocated or the C1MSGS1 file could not be
initialized.

Chapter 5. Batch Package SCL 5-7

5.3 Approve Package

 5.3 Approve Package

 5.3.1 Overview

The APPROVE PACKAGE action approves packages for execution. Use the
APPROVE PACKAGE action against a package only if the package has a
status of In-approval or Denied.

 5.3.2 Syntax

��──APPRove PACkage──package-id────────────────────────────────�

�─ ──┬ ┬── ─.────────────��
 │ │┌ ┐─,───────────
 └ ┘─OPTions──NOTEs──=──(─ ───

┴─'note text'─ ─)─

 5.3.2.1 Syntax Rules

APPROVE PACKAGE package-id

The APPROVE PACKAGE clause identifies the package you are approving.
You must use a fully specified package ID. The package ID can include
imbedded spaces. If the package ID contains an imbedded space or if the ID
comprises only numeric characters (for example, 12345), enclose the package
ID in either single or double quotation marks.

OPTIONS

OPTION clauses allow you to further specify package actions.

NOTES — Use the NOTES clause to add remarks to the package definition.
Enclose the note text in either single or double quotation marks. If you use
multiple text lines, enclose each text line in quotation marks and separate by
commas. You can specify up to 8 note text lines of up to 60 characters each.
This text replaces any text that is already associated with the package.

5.3.3 Example of Approve Package SCL

The following is an example of APPROVE PACKAGE SCL. The SCL
approves the package called PAYROLLPKGO1.

APPROVE PACKAGE PAYROLLPKG�1.

5-8 SCL Reference Guide

5.4 Archive Package

 5.4 Archive Package

 5.4.1 Overview

The ARCHIVE PACKAGE action offloads a package definition to an external
data set. The ARCHIVE PACKAGE action can, optionally, delete the
package after it is successfully written to the external data set.

You can use the ARCHIVE action against a package that has a status of
Executed or against a package that has a status of Committed. Regardless of
whether the status is Executed or Committed, you cannot use the ARCHIVE
action with the delete option against any package that has backout members.

Note: You can use the Endevor for OS/390 3.9 SAS reporting system to
generate package reports against the output data set. Use the archive output
file in the BSTXPKG DD statement. Refer to the Reports Guide for
information on SAS reporting.

 5.4.2 Syntax

��──ARChive PACkage──package-id──TO────────────────────────────────────�

�─ ──┬ ┬─DDName──ddname── ──────────�
 └ ┘ ─DSNname──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

�─ ──┬ ┬── ─.────────────��
 └ ┘ ─OPTion─ ─¤─ ──┬ ┬─WHEre OLDer THAn──number──DAYs─ ─¤─
 └ ┘ ─DELete─ ──┬ ┬─────────────── ─────
 └ ┘ ─AFTer ARChive─

 5.4.2.1 Syntax Rules

ARCHIVE PACKAGE package-id

The ARCHIVE PACKAGE clause identifies the package you are archiving.
You can either fully specify, partially wildcard or fully wildcard the package
ID. If you wildcard the package ID and specify the OPTIONS DELETE
AFTER ARCHIVE clause, you must specify the WHERE OLDER THAN
clause. If you fully specify the package ID, the WHERE OLDER THAN
clause is ignored.

You can include imbedded spaces in the package ID. If the package ID
contains an imbedded space or comprises only numeric characters (for
example, 12345) then enclose the package ID in either single or double
quotation marks.

Chapter 5. Batch Package SCL 5-9

5.4 Archive Package

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause identifies the data set to which you are archiving the package.
You must enter either a DDname or a data set name. Specify only one of the
two statements. The data set must be allocated with variable length records
and have a minimum record length of 4096. The data set blocksize can be
any appropriate value greater than or equal to 4100.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement must reference a sequential data set or a partitioned data
set with an explicit member.

The TO DSNAME clause identifies the name of an existing, catalogued data
set. If the data set is a partitioned data set, you can use the member clause to
specify a member name to be created. If you do no specify a MEMBER
clause, the member name created is TEMPNAME. The REPLACE clause
replaces an existing, like-named member. You can use the REPLACE clause
is only if the MEMBER clause is specified.

OPTIONS

OPTION clauses allow you to further specify package actions.

WHERE OLDER THAN number DAYS — This clause allows you to
specify the minimum age of the package you are archiving. The package
must be older than the number of days you specify in order for it to be
archived. For example, if you specify WHERE OLDER THAN 30 DAYS
and the current date is January 31, only packages executed successfully or
committed on or before January 1 are archived. There is no default value for
the WHERE OLDER THAN clause. You must specify the WHERE OLDER
THAN clause if you wildcard the package ID and specify the OPTIONS
DELETE AFTER ARCHIVE clause. If you fully specify the package ID, the
WHERE OLDER THAN clause is ignored. The WHERE OLDER THAN
value must be between 0 and 999, inclusive. You receive an error message if
you specify a value outside this range.

DELETE AFTER ARCHIVE— This option deletes the package after the
package definitions are successfully archived.

5.4.3 Example of Archive Package SCL

The following is an example of ARCHIVE PACKAGE SCL. The SCL
archives all packages that begin with PAYROLLPKG and are older than 30
days. The packages are deleted after they have been archived.

5-10 SCL Reference Guide

5.4 Archive Package

ARCHIVE PACKAGE PAYROLLPKG�

TO DSNAME 'PAY.PACKAGE.ARCHIVE'

OPTIONS WHERE OLDER THAN 3� DAYS

DELETE AFTER ARCHIVE.

Chapter 5. Batch Package SCL 5-11

5.5 Backin Package

 5.5 Backin Package

 5.5.1 Overview

The BACKIN action reverses the BACKOUT action and returns outputs to a
status of Executed. You can use the BACKIN action against a package that
has a status of Executed and has been backed-out.

 5.5.2 Syntax

��──BACKIn PACkage──package-id──.─────────────────────────────��

 5.5.2.1 Syntax Rules

BACKIN PACKAGE package-id

The BACKIN PACKAGE clause identifies the package you are backing-in.
You must use a fully specified package ID. You can include imbedded
spaces in the package ID. If the package ID contains an imbedded space or if
the ID comprises only numeric characters (for example, 12345), then enclose
the package ID in either single or double quotation marks.

5.5.3 Example of Backin Package SCL

The following is an example of BACKIN PACKAGE SCL. The SCL backs
in the package called PAYROLLPKG01.

BACKIN PACKAGE PAYROLLPKG�1.

5-12 SCL Reference Guide

5.6 Backout Package

 5.6 Backout Package

 5.6.1 Overview

The BACKOUT action allows a package to be backed-out after it has been
executed. The BACKOUT action restores the executable and output modules
to the status they were in prior to execution. You can use the BACKOUT
action against a package only if the package has a status of Executed,
In-execution, or Exec-failed and was created with the BACKOUT option
enabled.

 5.6.2 Syntax

��──BACKOut PACkage──package-id──.────────────────────────────��

 5.6.2.1 Syntax Rules

BACKOUT PACKAGE package-id

The BACKOUT PACKAGE clause identifies the package you are
backing-out. You must use a fully specified package ID. You can include
imbedded spaces in the package ID. If the package ID contains an imbedded
space or if the ID comprises only numeric characters (for example, 12345),
then enclose the package ID in either single or double quotation marks.

5.6.3 Example of Backout Package SCL

The following is an example of BACKOUT PACKAGE SCL. The SCL
backs out the package called PAYROLLPKG01.

BACKOUT PACKAGE PAYROLLPKG�1.

Chapter 5. Batch Package SCL 5-13

5.7 Cast Package

 5.7 Cast Package

 5.7.1 Overview

The CAST action prepares the package for review and subsequent execution.
Casting a package freezes the contents of the package and prevents further
changes to the package. You can use the CAST action against a package that
has a status of In-edit.

 5.7.2 Syntax

��──CASt PACkage──package-id───�

�─ ──┬ ┬─── ─.───────��
 └ ┘ ─OPTion──¤─ ──┬ ┬───────────────────────────────────── ─¤─
 ├ ┤──┬ ┬─BACKOut─ ──┬ ┬──── ─ENAbled─ ───────
 │ ││ │└ ┘─IS─
 │ │└ ┘ ─BACKOut──IS NOT──ENAbled─
 │ │┌ ┐─VALidate COMPonent──────────────

├ ┤──┼ ┼─VALidate COMPonent WITh WARning─
│ │└ ┘─DO NOT VALidate COMPonent───────

 ├ ┤─EXECUTion WINdow──┤ FROM TO ├───────
 │ │┌ ┐─,───────────
 └ ┘──NOTE= ─(─ ───

┴─'note-text'─ ─)────────

FROM TO:
├─ ──FROm from-date from-time ──┬ ┬───────────────────── ──────────────────┤
 └ ┘── TO to-date to-time

 5.7.2.1 Syntax Rules

CAST PACKAGE package-id

The CAST PACKAGE clause identifies the package you are casting. The
package ID can be either fully specified, partially wildcarded or fully
wildcarded.

You can include imbedded spaces in the package ID. If the package ID
contains an imbedded space or if the ID is comprised of only numeric digits
(for example, 12345) then enclose the package ID in either single or double
quotation marks.

OPTIONS

Option clauses allow you to further specify package actions.

BACKOUT IS ENABLED/NOT ENABLED — The BACKOUT IS
ENABLED/NOT ENABLED option indicates whether the backout facility
will be available for this package.

5-14 SCL Reference Guide

5.7 Cast Package

VALIDATE COMPONENTS — The VALIDATE COMPONENTS option
enables component validation within the package. You can only use this
clause if your site allows you to specify whether component validation is to
be performed.

The VALIDATE COMPONENTS clause causes the action to fail if
component validation fails. The VALIDATE COMPONENTS WITH
WARNING clause generates a warning if component validation fails. For
information on component validation see the Packages Guide.

EXECUTION WINDOW FROM from-date from-time TO to-date to-time
— The EXECUTION WINDOW clause allows you to change the execution
window of the package as part of cast processing. You can use the
EXECUTION WINDOW clause only if the package ID is fully qualified.
Specify date values in DDMMMYY format and the time values in HH:MM
format. If you specify the from-date, you must also specify the from-time. If
you specify the to-date, you must also specify the to-time.

NOTES — Use the NOTES clause to add remarks to the package definition.
Enclose the note text in either single or double quotation marks. If you use
multiple text lines, enclose each text line in quotation marks and separate by
commas. You can specify a maximum of 8 note text lines of up to 60
characters each. This text replaces any text that is already associated with the
package.

5.7.3 Example of Cast Package SCL

The following is an example of CAST PACKAGE SCL. The SCL casts a
package called PAYROLLPKG01.

CAST PACKAGE PAYROLLPKG�1.

Chapter 5. Batch Package SCL 5-15

5.8 Commit Package

 5.8 Commit Package

 5.8.1 Overview

The COMMIT PACKAGE action removes all backout/backin data while
retaining package event information. You can use the COMMIT action
against a package only if the package has a status of Executed or Exec-failed.

 5.8.2 Syntax

��──COMMit PACkage──package-id─────────────────────────────────�

�─ ──┬ ┬────────────────────────────────────── ─.────────────────��
 └ ┘─OPTion─ ──WHEre OLDer THAn number DAYs

 5.8.2.1 Syntax Rules

COMMIT PACKAGE package-id

The COMMIT PACKAGE clause identifies the package you are committing.
You can use a fully specified, partially wildcarded or fully wildcarded
package ID. If you wildcard the package ID, you must specify the WHERE
OLDER THAN clause. If you fully specify the package ID, the WHERE
OLDER THAN clause is ignored.

You can include imbedded spaces in the package ID. If the package ID
contains an imbedded space or comprises only numeric digits (for example,
12345), enclose the package ID in either single or double quotation marks.

OPTIONS

OPTION clauses allow you to further specify package actions.

WHERE OLDER THAN number DAYS— This clause allows you to
specify the minimum age of the package you are committing. A package
must be older than the number of days you specify in order to commit it. For
example, if you specify WHERE OLDER THAN 30 DAYS and the current
date is January 31, only packages executed successfully on or before January
1 are committed. There is no default value for the WHERE OLDER THAN
clause. If you wildcard the package ID you must specify the WHERE
OLDER THAN clause. The WHERE OLDER THAN value must be between
0 and 999, inclusive. You receive an error message if you specify a value
outside this range.

5-16 SCL Reference Guide

5.8 Commit Package

5.8.3 Example of Commit Package SCL

The following are two examples of SCL for the COMMIT PACKAGE action.
The first example commits a specific package called PAYROLLPKG01. The
second example commits all packages that begin with PAYROLLPKG and are
more than 30 days old.

Example One

COMMIT PACKAGE PAYROLLPKG�1.

Example Two

COMMIT PACKAGE PAYROLLPKG�

OPTIONS WHERE OLDER THAN 3� DAYS.

Chapter 5. Batch Package SCL 5-17

5.9 Define Package

 5.9 Define Package

 5.9.1 Overview

The DEFINE PACKAGE action creates a new package or updates an existing
one. If you use the DEFINE PACKAGE action to update an existing
package, the package must be in In-edit status.

Note: If you are using the DEFINE PACKAGE action to update an existing
package and do not specify a DESCRIPTION, IMPORT SCL FROM, COPY
PACKAGE or any OPTIONS, you will receive a caution-level message
indicating that the update will not be performed because no information was
provided to update the package.

 5.9.2 Syntax

��──DEFine PACkage──package-id───�

�─ ──┬ ┬─COPy─ ──┬ ┬────── ─PACkage──package-id────────────────────────── ───�
 │ │└ ┘─FROm─
 └ ┘─IMPort SCL FROm─ ──┬ ┬─DDName──ddname──────────────────────────
 └ ┘ ─DSName──dsname─ ──┬ ┬─────────────────────
 └ ┘ ─MEMber──member-name─

┌ ┐─DO NOT APPend─
�─ ──┼ ┼─────────────── ──�
 └ ┘─APPend────────

�──DEScription──description-text─ ──┬ ┬───────────────────── ─.──────────��
 └ ┘─OPTion──┤ OPTIONS ├─

OPTIONS:
├──¤─ ──┬ ┬────────────────────────────────── ─¤──────────────────────────┤
 │ │┌ ┐─STANdard──
 ├ ┤ ──┴ ┴─EMErgency─ ──┬ ┬───────── ──────
 │ │└ ┘─PACkage─
 │ │┌ ┐─NONsharable─
 ├ ┤ ──┴ ┴─SHArable──── ──┬ ┬───────── ────
 │ │└ ┘─PACkage─
 │ │┌ ┐ ─BACKOut─ ──┬ ┬──── ─ENAbled─────
 │ ││ │└ ┘─IS─
 ├ ┤──┴ ┴ ─BACKout─ ──┬ ┬──── ─NOT ENAbled─
 │ │└ ┘─IS─
 ├ ┤─EXECUTion WINdow──┤ FROM TO ├────
 │ │┌ ┐─,───────────
 └ ┘─NOTEs──=──(─ ───

┴─'note text'─ ─)──

FROM TO:
├──FROm──from-date──from-time─ ──┬ ┬────────────────────── ───────────────┤
 └ ┘─TO──to-date──to-time─

5-18 SCL Reference Guide

5.9 Define Package

 5.9.2.1 Syntax Rules

DEFINE PACKAGE package-id

The DEFINE PACKAGE clause identifies the package you are creating or
updating. An update occurs if the package ID exists and a create occurs if it
does not exist.

You must use a fully specified non-blank package ID. If you specify a blank
package ID and have the GENPKGID exit defined, the GENPKGID exit
invokes to generate a new package ID. If you do not have the GENPKGID
exit installed or if the GENPKGID exit does not supply a package ID, an
error message generates and the DEFINE PACKAGE action fails.

To specify a blank package ID place one or more blanks in single or double
quotation marks as the DEFINE PACKAGE package-id statement. A blank
package ID implies that the package is to be created.

See the Exits Guide for information on the GENPKID exit function.

COPY FROM PACKAGE package-id

The COPY FROM PACKAGE clause directs the DEFINE action to copy the
SCL from the package you specify into the package you are creating or
updating. You must use a fully specified package ID.

If you are creating a new package you must specify either the COPY FROM
PACKAGE or the IMPORT SCL FROM clause. If you are updating an
existing package, the clauses are optional.

IMPORT SCL FROM

The IMPORT SCL FROM clause directs the DEFINE action to copy the SCL
from the DD statement or data set name you specify into the package you are
creating or updating.

If you are creating a new package you must specify either the COPY FROM
PACKAGE or the IMPORT SCL FROM clause. If you are updating an
existing package, the clauses are optional.

APPEND/DO NOT APPEND

The APPEND clause indicates whether to append the SCL you are adding to
the existing package SCL or to replace it. You can only use the clause if you
specify the COPY PACKAGE or IMPORT SCL FROM clauses. The default
is DO NOT APPEND.

DESCRIPTION

Chapter 5. Batch Package SCL 5-19

5.9 Define Package

The DESCRIPTION clause allows you to associate a 50-character description
with the package. You must specify this clause if you are creating a new
package. If you are updating an existing package the clause is optional. If
the description text contains imbedded spaces enclose it in single quotation
marks. The description text you enter is not converted to uppercase.
Lowercase characters remain in lowercase.

OPTIONS

OPTION clauses allow you to further specify package actions.

STANDARD/EMERGENCY PACKAGE — This option allows you to
specify the package type. If you do not specify the
STANDARD/EMERGENCY PACKAGE clause and you are creating a new
package, the package defaults to a STANDARD package.

SHARABLE/NONSHARABLE PACKAGE — This option allows you to
specify whether this package can be edited by more than one person when in
In-edit status. If the package is sharable it can be edited by someone other
than the package creator. If the package is non-sharable it can only be edited
by its creator. If you do not specify the SHARABLE/NONSHARABLE
PACKAGE clause and you are creating a new package, the package defaults
to a NONSHARABLE package.

BACKOUT IS ENABLED/NOT ENABLED — The BACKOUT IS
ENABLED/NOT ENABLED option indicates whether you wish to have the
backout facility available for this package. Use this clause when creating a
new package only. The default is BACKOUT IS ENABLED.

EXECUTION WINDOW FROM from-date from-time TO to-date to-time—
This option allows you to specify the time frame within which to execute the
package. Specify date values in DDMMMYY format and the time values in
HH:MM format.

If you specify the from-date, you must also specify the from-time. If you
specify neither the from-date nor the from-time and you are creating a new
package, the from-date and the from-time default to the current date and time,
respectively.

If you specify the to-date, you must also specify the to-time. If you specify
neither the to-date nor the to-time and you are creating a new package, the
to-date and the to-time default to 31DEC99 and 00:00, respectively.

NOTES — Use the NOTES clause to add remarks to the package definition.
Enclose the note text in either single or double quotation marks. If you use
multiple text lines, enclose each text line in quotation marks and separate by
commas. You can specify up to 8 text lines of up to 60 characters each. The
text replaces any text which is already associated with the package.

5-20 SCL Reference Guide

5.9 Define Package

5.9.3 Example of Define Package SCL

The following is an example of DEFINE PACKAGE SCL. The SCL defines
a new package called PAYROLLPKG01, to be used to implement a new
payroll system. The SCL is copied from the data set specified by the
IMPORT SCL FROM DSNAME clause.

DEFINE PACKAGE PAYROLLPKG�1

DESCRIPTION 'PACKAGE TO IMPLEMENT THE NEW PAYROLL SYSTEM'

IMPORT SCL FROM DSNAME 'PAY.PACKAGE.SCL' MEMBER 'ADDSCL�1'

OPTIONS EXECUTION WINDOW FROM �1JAN93 ��:�1 TO 31DEC93 23:59

BACKOUT IS ENABLED

 SHARABLE PACKAGE

 STANDARD PACKAGE

NOTES=('THIS PACKAGE IMPLEMENTS THE NEW PAYROLL', SYSTEM.

THE SCL FOR THE PACKAGE WAS IMPORTED ', FROM DATASET

PAY.PACKAGE.SCL(ADDSCL�1)', THIS PACKAGE IS ASSUMED TO

HAVE APPROVERS', ASSOCIATED WITH IT.').

Chapter 5. Batch Package SCL 5-21

5.10 Delete Package

 5.10 Delete Package

 5.10.1 Overview

The DELETE PACKAGE action allows you to delete packages. You can use
the DELETE PACKAGE action to delete packages of any status type.

 5.10.2 Syntax

��──DELEte PACkage──package-id──�

�─ ──┬ ┬─── ─.────────────────────��
 └ ┘ ─OPTions──¤─ ──┬ ┬──────────────────────────────── ─¤─
 ├ ┤─WHEre OLDer THAn──number──DAYS─

└ ┘─┤ WHERE PACKAGE STATUS ├───────

WHERE PACKAGE STATUS:
 ┌ ┐──────────
├──WHEre PACkage STATus─ ──┬ ┬──── ─ALLstate─ ───

┴──┬ ┬──── ──┬ ┬─INEdit────── ─────────┤

 └ ┘─IS─ └ ┘─OR─ ├ ┤─INApproval──
 ├ ┤─DENied──────
 ├ ┤─APProved────
 ├ ┤─INEXecution─
 ├ ┤─EXECUTED────
 ├ ┤─EXECFailed──
 └ ┘─COMMITTEd───

 5.10.2.1 Syntax Rules

DELETE PACKAGE package-id

The DELETE PACKAGE clause identifies the package you are deleting. You
can use a fully specified, partially wildcarded or fully wildcarded package ID.
If you wildcard the package ID, you must specify the WHERE PACKAGE
STATUS IS clause. If you use a fully specified package ID, the WHERE
PACKAGE STATUS IS and the WHERE OLDER THAN clauses are
ignored.

OPTIONS

OPTION clauses allow you to further specify package actions.

WHERE OLDER THAN number DAYS— Use this clause to specify the
minimum age of the packages you are deleting. A package must be older
than the number of days you specify in order to delete it.

WHERE PACKAGE STATUS — This clause specifies the statuses of the
packages you are deleting. You can only use this clause when you wildcard
the package ID. If you do not specify the WHERE PACKAGE STATUS
clause, the DELETE PACKAGE action deletes packages of any status type.

5-22 SCL Reference Guide

5.10 Delete Package

5.10.3 Example of Delete Package SCL

The following is an example of DELETE PACKAGE SCL. The SCL deletes
all packages that begin with PAYROLLPKG, are older than 30 days, and are
in the In-edit status.

DELETE PACKAGE PAYROLLPKG�

OPTIONS WHERE OLDER THAN 3� DAYS

WHERE PACKAGE STATUS IS INEDIT.

Chapter 5. Batch Package SCL 5-23

5.11 Deny Package

 5.11 Deny Package

 5.11.1 Overview

The DENY PACKAGE action changes the status of a package to Denied.
You can use the DENY action against a package that has a status of
In-approval.

 5.11.2 Syntax

��──DENY PACkage──package-id─ ──┬ ┬────────────────────────────────── ────�
 └ ┘ ─OPTion─ ──┬ ┬──────────────────────
 │ │┌ ┐─,────────────────
 └ ┘───

┴NOTE=('note-text')

�──.──��

 5.11.2.1 Syntax Rules

DENY PACKAGE package-id

The DENY PACKAGE clause identifies the package you wish to deny. You
must use a fully specified package ID.

OPTIONS

OPTION clauses allow you to further specify package actions.

NOTES — You can use the NOTES clause to add remarks to the package
definition. Enclose the note text in either single or double quotation marks.
If you use multiple text lines, enclose each text line in quotation marks, and
separate by commas. You can specify up to 8 text lines of up to 60
characters each. The text replaces any text that is already associated with the
package.

5.11.3 Example of Deny Package SCL

The following is an example of DENY PACKAGE SCL. The SCL denies the
package called PAYROLLPKG01 and replaces any package notes associated
with the package.

DENY PACKAGE PAYROLLPKG�1

OPTIONS NOTES=('THE PACKAGE WAS DENIED BECAUSE ALL OF THE DOC- ',

'UMENTATION WAS NOT INCLUDED IN THE PACKAGE.',

'NOTE: THESE NOTES WILL REPLACE ANY EXISTING',

'PACKAGE NOTES.').

5-24 SCL Reference Guide

5.12 Execute Package

 5.12 Execute Package

 5.12.1 Overview

The EXECUTE PACKAGE action executes a package. You can use the
EXECUTE PACKAGE action against packages that have a status of
Approved or Execfailed. The default is to only execute approved packages.

 5.12.2 Syntax

��──EXEcute PACkage──package-id──�

�─ ──┬ ┬── ─.────────��
│ │┌ ┐──WHEre PACkage STATus ──┬ ┬──── APPROVED

 │ ││ │└ ┘─IS─
 └ ┘ ─OPTions──¤─ ──┼ ┼──────────────────────────────────────
 ├ ┤─EXECUTIon WINdow──┤ FROM TO ├────────
 ├ ┤ ──┬ ┬──── ─EXECFailed───────────────────
 │ │└ ┘─OR─
 └ ┘─¤────────────────────────────────────

FROM TO:
├─ ──FROm from-date from-time TO to-date to-time ────────────────────────┤

 5.12.2.1 Syntax Rules

EXECUTE PACKAGE package-id

The EXECUTE PACKAGE clause identifies the package you wish to execute.
You can use a fully specified, partially wildcarded, or fully wildcarded
package ID. When the package-id is fully or partially wildcarded and a
"where status" clause is specified, the "where status" clause will be ignored
and the parser will issue a warning message.

OPTIONS

OPTION clauses allow you to further specify action requests.

EXECUTION WINDOW FROM from-date from-time TO to-date to-time—
Use this option to specify the time frame within which to execute the
package. Specify date values in DDMMMYY format and the time values in
HH:MM format. If you specify the from-date, you must also specify the
from-time. If you specify the to-date, you must also specify the to-time. You
can only use the EXECUTION WINDOW clause if the package is fully
qualified and the existing execution window is closed.

Chapter 5. Batch Package SCL 5-25

5.12 Execute Package

WHERE PACKAGE STATUS—Use the WHERE PACKAGE STATUS
clause to identify the statuses of the packages you are executing. The default
is to execute packages that have a status of Approved.

If you specify the WHERE PACKAGE STATUS IS APPROVED clause, the
package must have a status of Approved. You can only use this clause when
you wildcard the package-id.

Use the WHERE PACKAGE STATUS IS EXECFAILED clause to re-execute
packages that have previously failed. You can only use this clause if the
package has a status of Executed and the package execution failed.

Use the OR clause to indicate that packages of either status can be executed.

5.12.3 Example of Execute Package SCL

The following is an example of EXECUTE PACKAGE SCL. The SCL
executes the package called PAYROLLPKG01.

EXECUTE PACKAGE PAYROLLPKG�1.

5-26 SCL Reference Guide

5.13 Export Package

 5.13 Export Package

 5.13.1 Overview

The EXPORT PACKAGE action writes the SCL associated with a package to
an external data set. You can use the EXPORT PACKAGE action against a
package of any status type.

 5.13.2 Syntax

��──EXPort PACkage──package-id──TO─────────────────────────────────────�

�─ ──┬ ┬─DDName──ddname── ─.───────��
 └ ┘ ─DSNname──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 5.13.2.1 Syntax Rules

EXPORT PACKAGE package-id

The EXPORT PACKAGE clause identifies the package you are exporting.
You must use a fully specified package ID.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause identifies where to write the package SCL. Enter either a
DDname or a data set name, not both. The data set defined by the TO
DDNAME/DSNAME clause must be allocated with either fixed or variable
length records. If fixed, the record length must be 80. If variable, the record
length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement must reference a sequential data set or a partitioned data
set with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set is a partitioned data set, you can use the member clause to
specify a member name to be created. If you do no specify a MEMBER
clause, the member name created is TEMPNAME. The REPLACE clause
replaces an existing like-named member. You can only use the REPLACE
clause if the MEMBER clause is specified.

Chapter 5. Batch Package SCL 5-27

5.13 Export Package

5.13.3 Example of Export Package SCL

The following is an example of EXPORT PACKAGE SCL. The SCL exports
the package SCL to the data set called PAY.PACKAGE.SCL. The MEMBER
clause specifies a member to be created called PAYPKGO1. It replaces any
like-named member.

EXPORT PACKAGE PAYROLLPKG�1

TO DSNAME 'PAY.PACKAGE.SCL' MEMBER 'PAYPKG�1' REPLACE.

5-28 SCL Reference Guide

5.14 Inspect Package

 5.14 Inspect Package

 5.14.1 Overview

The Inspect Package action checks the elements contained within a package
for conflicts that would effect its successful execution. The Inspect action
checks for security, signout, and synchronization conflicts as well as changes
in source. You can use the Inspect Package action to inspect packages that
have the following status:

 ■ In-approval

 ■ Approved

 ■ Exec-failed

 5.14.2 Syntax

��──INSpect PACkage──package-id──.────────────────────────────��

 5.14.2.1 Syntax Rules

INSPECT PACKAGE package-id

The INSPECT PACKAGE clause identifies the package you are inspecting.
You can use a fully specified, partially wildcarded, or fully wildcarded
package ID. If you partially or fully wildcard the package ID, Endevor only
inspects packages that have a status of in-approval, approved, or execution
failed.

Chapter 5. Batch Package SCL 5-29

5.15 Reset Package

 5.15 Reset Package

 5.15.1 Overview

The RESET PACKAGE action allows you to set the status of a package back
to In-edit so you can modify it. You can use the RESET action against a
package of any status type.

 5.15.2 Syntax

��──RESet PACkage──package-id──.──────────────────────────────��

 5.15.2.1 Syntax Rules

RESET PACKAGE package-id

The RESET PACKAGE clause identifies the package you are resetting. You
must use a fully specified package ID. The RESET PACKAGE action resets
a package of any status type.

5.15.3 Example of Reset Package SCL

The following is an example of RESET PACKAGE SCL. The SCL resets the
package called PAYROLLPKGO1 back to the status of In-edit.

RESET PACKAGE PAYROLLPKG�1.

5-30 SCL Reference Guide

5.16 Submit Package

 5.16 Submit Package

 5.16.1 Overview

Use the SUBMIT PACKAGE action to submit a JCL job stream to execute
one or more packages. The SUBMIT PACKAGE action is a replacement for
the existing Batch Package Submission Utility C1BM6000. Users of
C1BM6000 must migrate from C1BM6000 to ENBP1000. For more
information on ENBP1000 and SUBMIT PACKAGE action see the Packages
Guide.

 5.16.2 Syntax

��──SUBmit PACkage──package-id──�

�─ ──┬ ┬── ────────────────────�
 │ │┌ ┐─JCLIN──
 └ ┘ ─JOBCard─ ──┬ ┬ ─DDName─ ──┴ ┴─ddname─ ─────────────────────
 └ ┘ ─DSName──dsname─ ──┬ ┬─────────────────────
 └ ┘ ─MEMber──member-name─

�─ ──┬ ┬── ────────────────────────────�
 └ ┘ ─TO─ ──┬ ┬──────────────────────────────────────

 │ │┌ ┐─JCLOUT─
 ├ ┤─INTernal──REAder──DDName─ ──┴ ┴─ddname─
 └ ┘─CA7──────────────────────────────────

�─ ──┬ ┬── ────────�
 └ ┘ ─OPTion──¤─ ──┬ ┬── ─¤─

│ │┌ ┐─WHEre PACkage STATus─ ┌ ┐─APPROVED─
 ├ ┤ ──┴ ┴────────────────────── ──┬ ┬──── ──┴ ┴──────────
 │ │└ ┘─IS─
 ├ ┤ ──┬ ┬──── ─EXECFailed─────────────────────────────
 │ │└ ┘─OR─
 ├ ┤─MULtiple JOBStreams────────────────────────────
 │ │┌ ┐─INCrement JOBName────────

├ ┤──┴ ┴─DO NOT INCrement JOBName─ ──────────────────
 └ ┘ ─JCL PROcedure─ ──┬ ┬────── ──┬ ┬──── ─procname──────
 └ ┘─NAMe─ └ ┘─IS─

�─ ──┬ ┬─── ─.────────────────────────────��
 └ ┘ ─CA7──OPTIONS─ ──┬ ┬─────────────────────────
 └ ┘─DEPEndent──JOB──jobname─

 5.16.2.1 Syntax Rules

SUBMIT PACKAGE package-id

The SUBMIT PACKAGE clause identifies the package you are submitting for
execution. You can use a fully specified, partially wildcarded, or fully
wildcarded package ID. When the package-id is fully or partially wildcarded
and a "where status" clause is specified, the "where status" clause will be
ignored and the parser will issue a warning message.

JOBCARD DDNAME JCLIN
 DDNAME ddname
 DSNAME dsname
 MEMBER member-name

Chapter 5. Batch Package SCL 5-31

5.16 Submit Package

The JOBCARD clause identifies the location of the data set that contains the
JCL jobcard. The location be either a DDname or data set name. If you do
not specify the JOBCARD clause, the JCLIN DD statement is used by default
as the JCL jobcard location. If you specify this clause, the clause must
identify either a sequential or a partitioned data set with an explicitly specified
member name. The data set must have fixed length records and the record
length (LRECL) must be exactly 80.

INTERNAL READER DDNAME

The INTERNAL READER DDNAME clause identifies the name of a
preallocated DD statement to which the JCL is written. Generally, this is
allocated as DD SYSOUT=(class,INTRDR). The DD statement can
also reference any sequential or partitioned data set with an explicit member
that has a record length (LRECL) of 80. If you do not specify the
INTERNAL READER DDNAME clause, the SUBMIT PACKAGE action
writes the JCL to the JCLOUT DD statement.

CA7

If the TO CA7 clause is specified, neither the MULTIPLE JOBSTREAMS
nor the INCREMENT JOBNAME parameters may be specified.

If the TO CA7 clause is not specified, any specifications for CA7 options will
be ignored.

OPTIONS

OPTION clauses allow you to further specify package actions.

WHERE PACKAGE STATUS —Use the WHERE PACKAGE STATUS
clause to identify the statuses of the packages you are submitting. You can
submit packages that are in the Approved status or the Execfailed status or
both. Use the OR clause to execute packages of either status. If do not use
the OR clause, you can only specify one package status. If you do not
specify the WHERE PACKAGE STATUS clause, any package that has a
status of Approved is submitted.

MULTIPLE JOBSTREAMS — Use the MULTIPLE JOBSTREAMS clause
to submit a separate, unique job for each package. This clause is equivalent
to the C1BM6000 MULTJOBS JCL parameter. If you do not specify this
clause a single job that has a unique job step for each package is submitted.
A maximum of 200 packages can be processed in a single job stream. If
more than 200 packages meet the selection criteria, the SUBMIT action
submits additional jobs, each with up to 200 steps, until all of the eligible
packages have been submitted.

Note: C1BM6000 has been replaced by the Batch Facility (ENBP1000).
Users of C1BM6000 must migrate from C1BM6000 to ENBP1000. for more
information on ENBP1000 please see SCL Reference Guide.

5-32 SCL Reference Guide

5.16 Submit Package

INCREMENT JOBNAME — The INCREMENT JOBNAME clause directs
the Batch Package Facility to increment the last character in the jobcard you
provide. In general, use the INCREMENT JOBNAME clause with the
MULTIPLE JOBSTREAM clause to increment the last character in the JCL
jobcard for each job stream you submit.

You can also use the INCREMENT JOBNAME clause when you submit a
single job stream and more than 200 eligible packages are found. If an
additional job stream is created, the INCREMENT JOBNAME clause controls
whether the additional job names are incremented. The SUBMIT action uses
the following rules when incrementing the last character in the job name:

■ If the character is numeric, the next number is selected with wrap-around
to '0'.

■ If the character is alphabetic, the next letter is selected with wrap-around
to 'A'.

■ If the character is neither numeric nor alphabetic, it is not incremented.

JCL PROCEDURE NAME — The JCL PROCEDURE NAME clause
identifies the name of the JCL procedure you wish to invoke in the SUBMIT
PACKAGE action JCL. The name must be one to eight characters long and
constructed to accept the package ID as the only parm. The symbolic to pass
the package ID is PKGID. For example:

//ENDEVOR PROC PKGID=

//PSO1 EXEC PGM=NDVRC1,PARM=(C1BM3���,,&PKGID)

If you do not specify the JCL procedure name the SUBMIT PACKAGE
action creates JCL to invoke the Endevor procedure.

CA7 OPTIONS DEPENDENT JOB jobname

DEPENDENT JOB Specifies a single predecessor job which must complete
while demanded job is waiting.

For example: ca7 options dependent job cicsdown—This means that package
ENDEVOR will not run until jobname cicsdown is successfully completed.

SCL Example:

SUBMIT PACKAGE 'ENDEVOR'

JOBCARD DSNAME 'BST.ENDEVOR.JCLLIB'

 MEMBER 'JOBCARD'

 TO CA7

OPTIONS WHERE PACKAGE STATUS IS APPROVED

JCL PROCEDURE NAME IS ENDEVOR

CA7 OPTIONS DEPENDENT JOB CICSDOWN.

CA7 Translate the above SCL into CA7 syntax similar to this:

 DEMAND,JOB=PILRO�1C,DEPJOB=CICSDOWN,

 SET=NDB,JCLLIB=&ENDEVOR

Chapter 5. Batch Package SCL 5-33

5.16 Submit Package

For more information on CA-7 DEMAND, please refer to the CA7 commands
manual or contact you local CA7 Support.

5.16.3 Example of Submit Package SCL

The following is an example of SUBMIT PACKAGE SCL. The SCL submits
for execution all packages that begin with PAYROLLPKG. Each package
will have a unique job, the jobname will not be incremented.

SUBMIT PACKAGE PAYROLLPKG�

OPTIONS DO NOT INCREMENT JOBNAME.

5-34 SCL Reference Guide

Chapter 6. Environment Definition SCL

Chapter 6. Environment Definition SCL 6-1

6.1 Batch Environment Administration Facility

6.1 Batch Environment Administration Facility

Endevor's Batch Environment Administration Facility provides you with the
ability to perform administrative functions in batch, eliminating the need to
navigate multiple screens to create or change environment definitions.

The facility is controlled through SCL statements that provide the following
functions:

Statement Function

Build Creates DEFINE SCL statements from an existing environment structure.

Define Creates a new or updates an existing environment definition.

Delete Deletes an existing environment definition.

The BUILD, DEFINE, and DELETE statements manage the following
environment definitions:

 ■ Approver group

■ Approver group relationships

 ■ Element types

■ Package shipment data set mapping rules

■ Package shipment destination

 ■ Processor groups

 ■ Processor symbols

 ■ Subsystem

 ■ Systems

 ■ Type sequence

6-2 SCL Reference Guide

6.1 Batch Environment Administration Facility

6.2 Batch Environment Administration Facility Execution

 6.2.1 Overview

The Batch Environment Administration Facility, ENBE1000, allows you to
administer environment definitions in batch mode by executing SCL
statements specified in the ENESCLIN DD statement. The following general
rules apply to ENBE1000 execution:

■ You can specify statements in any order after the action name.

■ There is no defined limit to the number of statements you can specify and
process in a single execution.

■ Statements are executed in the sequence you provide.

■ Statements are parsed before execution.

■ If any syntax errors are found, none of the statements are processed.

■ Statements are processed as long as the action return code is less than or
equal to 12. If a return of greater than 12 is received all remaining
statements are bypassed.

 6.2.2 Execution JCL

An example of the JCL used to invoke the Batch Environment Administration
Facility is shown below.

//ENBE1��� EXEC PGM=NDVRC1,PARM='ENBE1���'

//�ENBE1��� EXEC PGM=NDVRC1,PARM='ENBE1���VALIDATE'

//STEPLIB DD DSN=iprfx.iqual.AUTHLIB,

// DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,

// DISP=SHR

//C1MSGS1 DD SYSOUT=�

//��

//� Uncomment the C1MSGS2 DD Statement if you want �

//� the Summary Report written to this location. By�

//� default the summary is written to C1MSGS1. �

//��

//�C1MSGS2 DD SYSOUT=�

//SYSTERM DD SYSOUT=�

//SYSABEND DD SYSOUT=�

//ENESCLIN DD �,

control statements

/�

Chapter 6. Environment Definition SCL 6-3

6.2 Batch Environment Administration Facility Execution

6.2.3 DD Statement Descriptions

The following table shows the DD statement descriptions:

DD Statement Description

ENESCLIN Defines the Batch Environment Administration Facility SCL statements. The
DD statement can refer to instream data, a sequential data set or a partitioned
data set with an explicit member.

If the ENESCLIN DD statement refers to a data set, the data set must have
either fixed length or variable length records. If the records are fixed length,
the record length must be exactly 80. If the records are variable length, the
record length must be at least 84.

If any of the data set attributes are incorrect, an error message is written and a
return code of 12 is set.

C1MSGS1 Defines the destination of the Batch Environment Administration Facility
Execution report. By default, the report is written to this destination. You can
write the report to a different location by uncommenting the C1MSGS2 DD
statement in the sample JCL.

6.2.4 Validating Input SCL

You can check the syntax of your SCL statements before submitting them for
execution by using an optional parameter of VALIDATE on the JCL PARM
statement. When you specify the VALIDATE parameter, the statements
specified in the ENESCLIN DD statement are parsed. The statements are not
executed. To specify the VALIDATE parameter, change the PARM=
statement on the sample JCL to PARM='ENBE1000VALIDATE'.

6-4 SCL Reference Guide

6.2 Batch Environment Administration Facility Execution

 6.2.5 Return Codes

The Batch Environment Administration Facility passes one of the following
return codes after execution is complete:

Return Code Meaning

0 All actions were performed successfully.

4 One or more actions completed with a warning message.

8 One or more actions completed with a caution message.

12 One or more action completed with an error message. The action may not have
completed successfully.

16 An unrecoverable error occurred.

20 The C1MSGS1 DD statement was not allocated or the C1MSGS1 file could not
be initialized.

Chapter 6. Environment Definition SCL 6-5

6.2 Batch Environment Administration Facility Execution

 6.2.6 Execution Reports

As the Batch Environment Administration Facility is processing, Endevor
writes a report to the C1MSGS1 DD statement. The report is divided into
the following three sections:

■ The Statement Summary Report

■ The Action Execution Report

■ The Action Summary Report

The Statement Summary Report

When you submit batch environment definition actions, Endevor validates the
SCL syntax and assigns a statement number to each SCL statement. The
Statement Summary Report lists your SCL statements and error messages. If
no errors are detected, processing continues and the Action Execution Report
and the Action Summary Report are produced. If any errors do exist,
processing terminates. Refer to the Error Codes and Messages Guide for an
explanation of any messages.

6-6 SCL Reference Guide

6.2 Batch Environment Administration Facility Execution

Below is an example of the Syntax Summary report.

COPYRIGHT (C) Computer Associates, INC., 2��2 �6APR�� �7:25:14 PAGE 1

Batch Environment Administration Facility Control Statement Summary Report RELEASE X.XX

�7:25:18 ENBE9��I Control statement parsing is beginning SERIAL XXXXXX

�7:25:18 ENBE��2I Statement 1

DEFINE SYSTEM 'MJFSYSB1'

TO ENVIRONMENT 'BATCHENV'

DESCRIPTION 'MJFSYSB1 - TEST SYSTEM �'

CCID NOT REQUIRED

 COMMENT REQUIRED

ELEMENT JUMP ACKNOWLEDGEMENT REQUIRED

NEXT SYSTEM 'MJFSYSB2'

SIGNOUT IS ACTIVE

SIGNOUT DATASET VALIDATION IS ACTIVE

STAGE ONE LOAD LIBRARY 'BST.BATCHENV.S2LOAD'

STAGE ONE LIST LIBRARY 'BST.BATCHENV.S2LIST'

STAGE TWO LOAD LIBRARY 'BST.BATCHENV.S1LOAD'

STAGE TWO LIST LIBRARY 'BST.BATCHENV.S1LIST'

 .

�7:25:18 ENBE��2I Statement 2

BUILD SCL FOR SYSTEM MJFSYSB1

FROM ENV BATCHENV

TO DSNAME 'DA1MF45.BUILD.SCL' MEMBER 'DEFTP16A' REPLACE

 .

�7:25:18 ENBE��2I Statement 3

DEFINE TYPE MJFTYPB1

TO ENV BATCHENV

 SYS MJFSYSB1

STAGE NUMBER 1

DESCRIPTION 'MJF TEST TYPE'

BASE LIBRARY IS 'BST.DEV361S1.SRCLIB'

DELTA LIBRARY IS 'BST.DEV.DELTA'

SOURCE ELEMENT LENGTH 8�

COMPARE COLUMN 1 TO 72

 LANGUAGE 'ASM'

PANVALET LANGUAGE 'BAL'

ELEMENT DELTA FORMAT IS FORWARD

 COMPRESS BASE

CONSOLIDATE ELEMENT LEVELS

NUMBER OF ELEMENT LEVELS TO CONSOLIDATE 4�

CONSOLIDATE ELEMENT AT LEVEL 55

CONSOLIDATE COMPONENT LEVELS

NUMBER OF COMPONENT LEVELS TO CONSOLIDATE 4�

CONSOLIDATE COMPONENT AT LEVEL 55

 .

�7:25:18 ENBE��2I Statement 4

BUILD SCL FOR TYPE MJFTYPB1

FROM ENV BATCHENV

 SYS MJFSYSB1

STAGE NUMBER 1

TO DSNAME 'DA1MF45.BUILD.SCL' MEMBER 'DEFTP16B' REPLACE

 .

�7:25:18 ENBE9�1I Control statement parsing has completed with no errors

Chapter 6. Environment Definition SCL 6-7

6.2 Batch Environment Administration Facility Execution

The Action Execution Report

This section of the execution report,the Action Execution Report, contains the
messages generated by each action during its processing.

Below is an example of the Action Execution Report.

Batch Environment Administration Facility Action Execution Report RELEASE X.XX SERIAL XXXXXX

�7:25:22 ENBE��1I Statement 1 Object 1

DEFINE SYSTEM 'MJFSYSB1'

TO ENVIRONMENT 'BATCHENV'

DESCRIPTION 'MJFSYSB1 - TEST SYSTEM �'

NEXT SYSTEM 'MJFSYSB2'

 COMMENTS REQUIRED

CCID NOT REQUIRED

ELEMENT JUMP ACKNOWLEDGEMENT REQUIRED

SIGNOUT IS ACTIVE

SIGNOUT DATASET VALIDATION IS ACTIVE

STAGE ONE LOAD LIBRARY IS

 'BST.BATCHENV.S2LOAD'

STAGE ONE LIST LIBRARY

 'BST.BATCHENV.S2LIST'

STAGE TWO LOAD LIBRARY IS

 'BST.BATCHENV.S1LOAD'

STAGE TWO LIST LIBRARY IS

 'BST.BATCHENV.S1LIST'

 .

�7:25:23 ENBE111I System MJFSYSB1 in Environment BATCHENV created

�7:25:23 ENBE11�I The DEFINE SYSTEM action has completed. Return Code is �

�7:25:24 ENBE��1I Statement 2 Object 1

BUILD SCL FOR SYSTEM 'MJFSYSB1'

FROM ENVIRONMENT 'BATCHENV'

TO DSNAME 'DA1MF45.BUILD.SCL' MEMBER 'DEFTP16A' REPLACE

 .

�7:25:25 ENBE115I DEFINE SCL created for System MJFSYSB1 in Environment BATCHENV

�7:25:25 ENBE11�I The BUILD SYSTEM action has completed. Return Code is �

�7:25:26 ENBE��1I Statement 3 Object 1

DEFINE TYPE 'MJFTYPB1'

TO ENVIRONMENT 'BATCHENV'

 SYSTEM 'MJFSYSB1'

STAGE NUMBER 1

DESCRIPTION 'MJF TEST TYPE'

BASE LIBRARY IS

 'BST.DEV361S1.SRCLIB'

DELTA LIBRARY IS

 'BST.DEV.DELTA'

ELEMENT DELTA FORMAT IS FORWARD

 COMPRESS BASE

SOURCE ELEMENT LENGTH IS 8�

COMPARE FROM COLUMN 1 TO 72

CONSOLIDATE ELEMENT LEVELS

CONSOLIDATE ELEMENT AT LEVEL 55

NUMBER OF ELEMENT LEVELS TO CONSOLIDATE 4�

LANGUAGE IS 'ASM'

PANVALET LANGUAGE IS 'BAL'

CONSOLIDATE COMPONENT LEVELS

CONSOLIDATE COMPONENT AT LEVEL 55

NUMBER OF COMPONENT LEVELS TO CONSOLIDATE 4�

 .

�7:25:27 ENBE113I Type MJFTYPB1 in Environment BATCHENV, System MJFSYSB1, Stage 1 created

�7:25:27 ENBE11�I The DEFINE TYPE action has completed. Return Code is �

6-8 SCL Reference Guide

6.2 Batch Environment Administration Facility Execution

The Action Summary Report

The Action Summary report summarizes the actions performed by the Batch
Environment Administration Facility. The report contains one line for each
environment object processed by each action. The report line identifies the
action, the environment object, and the action return code. The Stmt Number
refers to the number this statement is assigned in the Action Summary
Report. The Action Number refers to the action number assigned to this
request in the Execution Report.

An example of the Action Summary report is shown below.

 Batch Environment Administration Facility Action Summary Report RELEASE X.XX SERIAL XXXXXX

 Stmt Action

Number Number Action Object RC Location

------ ------ ------------------- ------------- -- ------------------------------------

1 1 DEFINE SYSTEM MJFSYSB1 � To Env BATCHENV

2 1 BUILD SYSTEM MJFSYSB1 � From Env BATCHENV

3 1 DEFINE TYPE MJFTYPB1 � To Env BATCHENV Sys MJFSYSB1 Stage 1

4 1 BUILD TYPE MJFTYPB1 � From Env BATCHENV Sys MJFSYSB1 Stage 1

Chapter 6. Environment Definition SCL 6-9

6.2 Batch Environment Administration Facility Execution

 6.3 Edit Commands

 6.3.1 Overview

The Batch Environment Administration Facility provides commands,
implemented as ISPF/PDF edit macros, that assist you in creating SCL by
providing model SCL statements. The edit macros are written in REXX.
Therefore, they are only available on TSO/E Version 2 or higher and
ISPF/PDF Version 2.3 or higher.

6.3.2 Invoking Edit Commands

You invoke the edit commands while in an ISPF/PDF edit session. The
syntax for invoking the edit commands is:

��──COMMAND NAME──object_type─ ──┬ ┬───────────── ─.─────────────────────��
 └ ┘─object_name─

Command Name

The command name identifies the SCL action you are creating and places
model SCL statements at the current cursor location of the data set you are
editing. The following list identifies the command names and the functions
that each perform.

Command Name Function

ENDEFINE Generates model SCL statements for the DEFINE action.

ENDELETE Generates model SCL statements for the DELETE action.

ENBUILD Generates model SCL statements for the BUILD action.

6-10 SCL Reference Guide

6.3 Edit Commands

Object Type

The object_type parameter specifies the kind of environment definition that
you are creating. The following table provides a list of object_types, valid
abbreviations, and the corresponding environment definition created.

Object_types Object_type
Abbreviations

Environment Definition Created

System Sys System

Subsystem Sub Subsystem

Type Typ Element Type

Approver App Approver Group

Relation Rel Approver Group Relation

Group Gro Processor Group

Symbol Sym Processor Symbol

Destination Des Package Shipment Destination

Object Name

The object_name is optional and refers to the name of the environment
definition for which you are creating SCL. If you provide the object_name,
the macro substitutes the object_name into the SCL generated.

Chapter 6. Environment Definition SCL 6-11

6.3 Edit Commands

6.3.3 Edit Command Rules

The following general rules apply to the SCL created by the edit commands:

■ The ENDEFINE command assumes you are creating an environment
definition.

■ The ENDEFINE command generates the TO STAGE NUMBER clause.

■ SCL actions that contain optional clauses with default values are
generated using the default value. For example, the DEFINE SYSTEM
action includes the optional clause COMMENTS NOT REQUIRED.

■ SCL actions that contain required clauses are generated with a place
holder in which you can enter the appropriate information. The place
holder is a string of question marks ('?'). For example, the ENBUILD
command generates the following TO DSNAME clause: TO DSNAME
????????? .

■ There is one SCL clause on each data record. If necessary, an SCL
clause can span multiple lines.

6-12 SCL Reference Guide

6.3 Edit Commands

6.4 The Build Statements

 6.4.1 Overview

Use BUILD statements to create DEFINE SCL statements from an existing
environment definition or structure. You can create DEFINE SCL statements
for a single environment definition (for example system, subsystem, or type)
or for an entire environment structure (for example the Production
environment). The SCL statements are written to either a sequential data set
or a partitioned data set member. You can modify the data set that the
BUILD action creates or transmit it to a remote Endevor location for
execution.

The following general conventions apply to all BUILD statements:

■ The environment names you specify in the BUILD clause can have a
maximum of 8 characters with the exception of SHIPMENT
DESTINATION, which can be no longer than 7 characters, and
APPROVER GROUP, which can be no longer than 16 characters.

■ The environment names you specify in the BUILD clause cannot include
imbedded spaces, non-alphabetical, non-numeric, or non-national
characters.

■ If you specify an environment name that contains only numeric characters
then you must enclose it in single or double quotation marks.

■ You can use partially or fully wildcarded names in the BUILD clause.

■ You can use wildcards for non-environment inventory locations.

■ Environment names you specify in the FROM clause must all be fully
specified.

■ If the data set name you specify in the TO DSNAME clause contains
imbedded periods you must enclose it in quotation marks.

Chapter 6. Environment Definition SCL 6-13

6.4 The Build Statements

6.4.2 Build SCL for Approver Group

Use the BUILD SCL FOR APPROVER GROUP action to build DEFINE
SCL statements for approver group definitions.

 6.4.3 Syntax

��──BUIld SCL─ ──┬ ┬───── ─APProver GROup──group-name─────────────────────�
 └ ┘─FOR─

�─ ─FROm──ENVironment──environment-name─────────────────────────────────�

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.3.1 Syntax Rules

BUILD SCL FOR APPROVER GROUP group-name

The BUILD SCL FOR APPROVER GROUP clause identifies the 1- to
8-character name of the approver group from which you are building the
DEFINE statement. You can specify a partially or fully wildcarded approver
group name.

FROM ENVIRONMENT environment-name

The FROM ENVIRONMENT clause identifies the environment location of
the approver group. You must use a fully specified, non-wildcarded
environment name.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set you specify
in the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement you specify must be a sequential data set or a partitioned
data set with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is a partitioned data
set and you do not specify the MEMBER clause, the member name created is

6-14 SCL Reference Guide

6.4 The Build Statements

TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Approver Group SCL

The following is an example of BUILD SCL FOR APPROVER GROUP
SCL. The example builds DEFINE SCL using the approver group called
ACCTPAY1. The SCL is written to the data set named
ENDEVOR.SCLOUT. The member ACCTSPAY replaces any existing
like-named member.

BUILD SCL FOR APPROVER GROUP "ACCTPAY1"

FROM ENVIRONMENT "DEVEL"

TO DSNAME "ENDEVOR.SCLOUT"

 MEMBER "ACCTSPAY"

 REPLACE .

Chapter 6. Environment Definition SCL 6-15

6.4 The Build Statements

6.4.4 Build SCL for Approver Relation

Use the BUILD SCL FOR APPROVER RELATION action to build DEFINE
SCL to relate a approver group to a particular inventory area.

 6.4.5 Syntax

��──BUIld SCL─ ──┬ ┬───── ─APProver RELation──────────────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name──APProver GROup──group-name─────�

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.5.1 Syntax Rules

BUILD SCL FOR APPROVER RELATION

The BUILD SCL FOR APPROVER RELATION clause indicates that you are
building DEFINE SCL to relate a approver group to a particular inventory
area. You must specify this clause.

FROM ENVIRONMENT environment-name APPROVER GROUP
group-name

The FROM ENVIRONMENT clause identifies the environment location of
the approver group from which you are building DEFINE SCL. You must
use a fully specified, non-wildcarded environment name.

The APPROVER GROUP clause identifies the approver group associated with
the environment.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set you specify
in the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement you specify must be a sequential data set or a partitioned
data set with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation

6-16 SCL Reference Guide

6.4 The Build Statements

marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is a partitioned data
set and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Approver Relation SCL

The following is an example of the BUILD SCL FOR APPROVER
RELATION SCL. The example builds DEFINE SCL that relates the
ACCTPAY1 approver group to environment DEVEL. The SCL is written to
DD statement SCLOUT.

BUILD SCL FOR APPROVER RELATION

FROM ENVIRONMENT "DEVEL"

APPROVER GROUP "ACCTPAY1"

TO DDNAME "SCLOUT" .

Chapter 6. Environment Definition SCL 6-17

6.4 The Build Statements

6.4.6 Build SCL for Environment

Use the BUILD SCL FOR ENVIRONMENT action to build DEFINE SCL
statements for environment definitions. The BUILD SCL FOR
ENVIRONMENT action builds DEFINE SCL statements for all inventory
definitions (system, subsystem, type, etcetera) associated with the environment
you specify.

 6.4.7 Syntax

��──BUIld SCL─ ──┬ ┬───── ─ENVironment──environment-name──────────────────�
 └ ┘─FOR─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.7.1 Syntax Rules

BUILD SCL FOR ENVIRONMENT environment-name

The BUILD SCL FOR ENVIRONMENT clause identifies the environment
from which you are building DEFINE SCL. You must specify a fully
qualified environment name.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set you specify
in the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement you specify must be a sequential data set or a partitioned
data set with an explicit member.

6-18 SCL Reference Guide

6.4 The Build Statements

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is partitioned data set
and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Environment SCL

The following is an example of the BUILD SCL FOR ENVIRONMENT
SCL. The example builds DEFINE SCL for an environment called DEVEL.
The SCL is written to the data set named ENDEVOR.SCLOUT. The member
DEVEL replaces any existing like-named member.

BUILD SCL FOR ENVIRONMENT "DEVEL"

TO DSNAME "ENDEVOR.SCLOUT"

 MEMBER "DEVEL"

 REPLACE .

Chapter 6. Environment Definition SCL 6-19

6.4 The Build Statements

6.4.8 Build SCL for Processor Group

Use the BUILD SCL FOR PROCESSOR GROUP action to build DEFINE
SCL to set up processor groups.

 6.4.9 Syntax

��──BUIld SCL─ ──┬ ┬───── ─PROcessor GROup──group-name────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge ID──stage-id───── ────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�─ ──┬ ┬───────────────────── ──�
 └ ┘─INCLUDE SUBOrdinate─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.9.1 Syntax Rules

BUILD SCL FOR PROCESSOR GROUP group-name

The BUILD SCL FOR PROCESSOR GROUP clause identifies the 1- to
8-character name of the processor group from which are building DEFINE
SCL. You can specify a partially or fully wildcarded name.

FROM ENVIRONMENT environment-name
 SYSTEM system-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no

 INCLUDE SUBORDINATES

The FROM clause identifies the inventory location of the processor group
from which you are building DEFINE SCL. You must specify a fully
qualified environment name. The system, and type names can be partially or
fully wildcarded. Enter either the stage ID or stage number associated with
the processor group.

6-20 SCL Reference Guide

6.4 The Build Statements

Specify the INCLUDE SUBORDINATES clause if you wish to create
DEFINE SCL for the processor symbols associated with the processor group.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set you specify
in the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement you specify must be a sequential data set or a partitioned
data set with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is partitioned data set
and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Processor Group SCL

The following is an example of the BUILD SCL FOR PROCESSOR GROUP
SCL. The example builds DEFINE SCL for the processor group called
COBNBL1. The optional clause INCLUDE SUBORDINATES is specified,
therefore, DEFINE SCL is built for all the processor symbols associated with
the processor group. The SCL is written to the data set named
ENDEVOR.SCLOUT. The member PROCGR1 replaces any existing
like-named member.

BUILD SCL FOR PROCESSOR GROUP "COBNBL1"

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 TYPE "COBOL"

STAGE ID "U"

 INCLUDE SUBORDINATES

TO DSNAME "ENDEVOR.SCLOUT"

 MEMBER "PROCGR1"

 REPLACE .

Chapter 6. Environment Definition SCL 6-21

6.4 The Build Statements

6.4.10 Build SCL for Processor Symbol

Use the BUILD SCL FOR PROCESSOR SYMBOL action to build DEFINE
SCL to define the processor symbol overrides associated with a processor
group.

 6.4.11 Syntax

��──BUIld SCL─ ──┬ ┬───── ─PROcessor SYMbol───────────────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge ID──stage-id───── ────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�──PROcessor GROup──group-name───�

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.11.1 Syntax Rules

BUILD SCL FOR PROCESSOR SYMBOL

The BUILD SCL FOR PROCESSOR SYMBOL clause indicates that you are
to build DEFINE SCL for processor symbols. You must specify this clause.

FROM ENVIRONMENT environment-name
 SYSTEM system-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no
PROCESSOR GROUP group-name

The FROM clause identifies inventory location of the processor symbols from
which you are building DEFINE SCL. You must specify a fully qualified
environment name The system, type, and processor group names can be
partially or fully wildcarded. Enter either the stage ID or stage number
associated with the processor symbols.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set defined by
the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

6-22 SCL Reference Guide

6.4 The Build Statements

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement you specify must be a sequential data set or a partitioned
data set with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is partitioned data set
and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Processor Symbol SCL

The following is an example of the BUILD SCL FOR PROCESSOR
SYMBOL SCL. The example builds DEFINE SCL for processor symbols
using the processor group COBNBL1. DEFINE SCL for all symbols
associated with the processors in processor group COBNBL1 is built. The
SCL is written to the data set named ENDEVOR.SCLOUT. The member
PROCSYM1 replaces any existing like-named member.

BUILD SCL FOR PROCESSOR SYMBOL

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 TYPE "COBOL"

STAGE ID "U"

PROCESSOR GROUP "COBNBL1"

TO DSNAME "ENDEVOR.SCLOUT"

 MEMBER "PROCSYM1"

 REPLACE .

Chapter 6. Environment Definition SCL 6-23

6.4 The Build Statements

6.4.12 Build SCL for Shipment Destination

Use the BUILD SCL FOR SHIPMENT DESTINATION action to build SCL
to define a package shipment destination and to define all data set mapping
rules associated with a package shipment destination. It is not possible to
build SCL to define an individual data set mapping rule.

 6.4.13 Syntax

��──BUIld SCL─ ──┬ ┬───── ─SHIPMent──DESTination──destination-name────────�
 └ ┘─FOR─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.13.1 Syntax Rules

BUILD SCL FOR SHIPMENT DESTINATION destination-name

The BUILD SCL FOR SHIPMENT DESTINATION clause identifies the 1-
to 7-character name of the shipment destination from which you are building
DEFINE SCL. You can specify a partially or fully wildcarded destination
name.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set defined by
the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement must define a sequential data set or a partitioned data set
with an explicit member.

6-24 SCL Reference Guide

6.4 The Build Statements

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is partitioned data set
and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Shipment Destination SCL

The following is an example of the BUILD SCL FOR SHIPMENT
DESTINATION SCL. The example builds DEFINE SCL for a shipment
destination called DEST001. The SCL is written to the DD statement
SCLOUT.

BUILD SCL FOR SHIPMENT DESTINATION "DEST��1"

TO DDNAME "SCLOUT" .

Chapter 6. Environment Definition SCL 6-25

6.4 The Build Statements

6.4.14 Build SCL for Subsystem

Use the BUILD SCL FOR SUBSYSTEM action to build DEFINE SCL
statements for subsystem definitions.

 6.4.15 Syntax

��──BUIld SCL─ ──┬ ┬───── ─SUBSystem──subsystem-name──────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.15.1 Syntax Rules

BUILD SCL FOR SUBSYSTEM subsystem-name

The BUILD SCL FOR SUBSYSTEM identifies the 1- to 8-character name of
the subsystem from which you are building DEFINE SCL. You can specify a
partially or fully wildcarded subsystem name.

FROM ENVIRONMENT environment-name
 SYSTEM system-name

The FROM clause identifies the inventory location of the subsystem from
which you are building DEFINE SCL. You must specify a fully qualified,
non-wild carded environment name. You must also enter the name of the
system to which the subsystem is defined. You can use a partially or fully
wildcarded system name.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set defined by
the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement to
which the SCL is written. The DD statement must define a sequential data
set or a partitioned data set with an explicit member.

6-26 SCL Reference Guide

6.4 The Build Statements

The TO DSNAME clause identifies the name of an existing catalogued data
set to which the SCL is written. If the data set name contains imbedded
periods, enclose it in quotation marks. If the data set is a partitioned data set,
you can use the MEMBER clause to define a member name to be created. If
the data set is partitioned data set and you do not specify the MEMBER
clause, the member name created is TEMPNAME. The REPLACE clause
replaces an existing like-named member. You can only use the REPLACE
clause if you specify the MEMBER clause.

Example of Build SCL for Subsystem SCL

The following is an example of the BUILD SCL FOR SUBSYSTEM SCL.
The example builds DEFINE SCL for all subsystems using environment
DEVEL and system ACCT. The SCL is written to the DD statement
SCLOUT.

BUILD SCL FOR SUBSYSTEM "�"

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

TO DDNAME "SCLOUT" .

Chapter 6. Environment Definition SCL 6-27

6.4 The Build Statements

6.4.16 Build SCL for System

Use the BUILD SCL FOR SYSTEM action to build DEFINE SCL statements
for system definitions.

 6.4.17 Syntax

��──BUIld SCL─ ──┬ ┬───── ─SYStem──system-name────────────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name─ ──┬ ┬───────────────────── ───────�
 └ ┘─INCLUDE SUBOrdinate─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.17.1 Syntax Rules

BUILD SCL FOR SYSTEM system-name

The BUILD SCL FOR SYSTEM clause identifies the 1- to 8-character name
of the system from which you wish to build DEFINE SCL. You can specify
a partially or fully wildcarded system name.

FROM ENVIRONMENT environment-name
 INCLUDE SUBORDINATES

The FROM clause identifies environment location of the system from which
you are building DEFINE SCL. You must use a fully specified and
non-wildcarded environment name.

Specify the INCLUDE SUBORDINATES clause if you wish to create
DEFINE SCL for the subsystem, type, type sequence, processor group, and
processor group symbolic definitions associated with this system.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set defined by
the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

6-28 SCL Reference Guide

6.4 The Build Statements

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement must define a sequential data set or a partitioned data set
with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is partitioned data set
and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for System SCL

The following is an example of the BUILD SCL FOR SYSTEM SCL. The
example builds DEFINE SCL for the system ACCT using environment
DEVEL. The optional clause INCLUDE SUBORDINATES is specified,
therefore, DEFINE SCL is built for all inventory definitions associated with
system ACCT. The SCL is written to the data set named
ENDEVOR.SCLOUT. The member SYSACCT replaces any existing
like-named member.

BUILD SCL FOR SYSTEM "ACCT"

FROM ENVIRONMENT "DEVEL"

 INCLUDE SUBORDINATES

TO DSNAME "ENDEVOR.SCLOUT"

 MEMBER "SYSACCT"

 REPLACE .

Chapter 6. Environment Definition SCL 6-29

6.4 The Build Statements

6.4.18 Build SCL for Type

Use the BUILD SCL FOR TYPE action to build DEFINE SCL statements for
type definitions.

 6.4.19 Syntax

��──BUIld SCL─ ──┬ ┬───── ─TYPe──type-name────────────────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ──┬ ┬─STAge ID──stage-id───── ──┬ ┬───────────────────── ────────────────�
 └ ┘ ─STAge NUMber──stage-no─ └ ┘─INCLUDE SUBOrdinate─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.19.1 Syntax Rules

BUILD SCL FOR TYPE type-name

The BUILD SCL FOR TYPE clause identifies the 1- to 8-character name of
the type from which you are building DEFINE SCL. You can specify a
partially or fully wildcarded type name.

FROM ENVIRONMENT environment-name
 SYSTEM system-name

STAGE ID stage-id
STAGE NUMBER stage-no

 INCLUDE SUBORDINATES

The FROM clause identifies inventory location of the type from which you
wish to build DEFINE SCL. You must use a fully specified and
non-wildcarded environment name. The system name can be partially or fully
wildcarded. Specify either the stage ID or stage number to which the type is
defined.

6-30 SCL Reference Guide

6.4 The Build Statements

Specify the INCLUDE SUBORDINATES clause if you wish to create
DEFINE SCL for the processor group and processor group symbol definitions
associated with the type.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set defined by
the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement must define a sequential data set or a partitioned data set
with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set to which the SCL is written. If the data set name contains imbedded
periods, enclose it in quotation marks. If the data set is a partitioned data set,
you can use the member clause to define a member name to be created. If
the data set is partitioned data set and you do not specify the MEMBER
clause, the member name created is TEMPNAME. The REPLACE clause
replaces an existing like-named member. You can only use the REPLACE
clause if you specify the MEMBER clause.

Example of Build SCL for Type SCL

The following is an example of the BUILD SCL FOR TYPE SCL. The
example builds DEFINE SCL for all types using environment DEVEL, system
ACCT, and stage number 1. The SCL is written to the DD statement
SCLOUT.

BUILD SCL FOR TYPE "�"

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

STAGE NUMBER 1

TO DDNAME "SCLOUT" .

Chapter 6. Environment Definition SCL 6-31

6.4 The Build Statements

6.4.20 Build SCL for Type Sequence

Use the BUILD SCL FOR TYPE SEQUENCE action to build DEFINE SCL
for type sequence definitions. The BUILD SCL FOR TYPE SEQUENCE
action assigns sequence numbers beginning with 5 and incremented by 10 for
each type.

 6.4.21 Syntax

��──BUIld SCL─ ──┬ ┬───── ─TYPe SEQuence──────────────────────────────────�
 └ ┘─FOR─

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ──┬ ┬─STAge ID──stage-id───── ───�
 └ ┘ ─STAge NUMber──stage-no─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────────────────────────── ─.────��
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────────────────────────
 └ ┘ ─MEMber──member-name─ ──┬ ┬─────────
 └ ┘─REPlace─

 6.4.21.1 Syntax Rules

BUILD SCL FOR TYPE SEQUENCE

The BUILD SCL FOR TYPE SEQUENCE indicates that you are to create
DEFINE SCL from an existing type sequence definition. You must specify
this clause.

FROM ENVIRONMENT environment-name
 SYSTEM system-name

STAGE ID stage-id
STAGE NUMBER stage-no

The FROM clause identifies the inventory location of the type sequence from
which you are building DEFINE SCL. The environment name you specify in
the FROM clause must be fully specified and non-wildcarded. The system
name can be partially or fully wild carded. Specify either the stage ID for
stage number to which the type sequence is defined.

TO DDNAME ddname
 DSNAME dsname
 MEMBER member-name
 REPLACE

The TO clause indicates where you wish to have the BUILD SCL written.
Enter either a DDname or a data set name, not both. The data set defined by
the TO DDNAME/DSNAME clause must be allocated with either fixed or
variable length records. If fixed, the record length must be 80. If variable,
the record length must be at least 84.

6-32 SCL Reference Guide

6.4 The Build Statements

The TO DDNAME clause identifies the name of an allocated DD statement.
The DD statement must define a sequential data set or a partitioned data set
with an explicit member.

The TO DSNAME clause identifies the name of an existing catalogued data
set. If the data set name contains imbedded periods, enclose it in quotation
marks. If the data set is a partitioned data set, you can use the member clause
to define a member name to be created. If the data set is partitioned data set
and you do not specify the MEMBER clause, the member name created is
TEMPNAME. The REPLACE clause replaces an existing like-named
member. You can only use the REPLACE clause if you specify the
MEMBER clause.

Example of Build SCL for Type Sequence SCL

The following is an example of the BUILD SCL FOR TYPE SEQUENCE
SCL. The example builds DEFINE SCL for a type sequence using
environment DEVEL, system ACCT, and stage ID U. The SCL is written to
the data set named ENDEVOR.SCLOUT. The member ACCTSEQ1 replaces
any existing like-named member.

BUILD SCL FOR TYPE SEQUENCE

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

STAGE ID "U"

TO DSNAME "ENDEVOR.SCLOUT"

 MEMBER "ACCTSEQ1"

 REPLACE .

Chapter 6. Environment Definition SCL 6-33

6.4 The Build Statements

6.5 The Define Statements

 6.5.1 Overview

Use DEFINE statements to create or update environment definitions. An
environment definition is created if it does not exist. An update occurs if the
environment definition exists.

The following general conventions apply to all DEFINE statements:

■ Names you specify in the DEFINE clause can have a maximum of 8
characters with the exception of SHIPMENT DESTINATION, which can
be no longer than 7 characters, and APPROVER GROUP, which can be
no longer than 16 characters.

■ You can use partially or fully wildcarded names in DEFINE clauses.
Wildcarded names indicate that an update is to be performed on existing
environment definitions that match the name you specify.

■ If you specify a name that contains only numeric characters you must
enclose it in single or double quotation marks.

■ You cannot specify names that include imbedded spaces,
non-alphabetical, non-numeric, or non-national characters.

6-34 SCL Reference Guide

6.5 The Define Statements

6.5.2 Define Approver Group

Use the DEFINE APPROVER GROUP action to create or update approver
group definitions.

 6.5.3 Syntax

��──DEFine APProver GROup──group-name──────────────────────────────────�

�─ ─TO─ ─ENVironment──environment-name──TITle──title-text────────────────�

�─ ──┬ ┬──────────────────────────────── ─────────────────────────────────�
 │ │┌ ┐─�─────
 └ ┘ ─QUOrum SIZe─ ──┬ ┬──── ──┴ ┴─value─
 └ ┘─IS─

 ┌ ┐─,─────────────────────────────
�─ ─APProver─ ──┬ ┬─EQ─ ─(─ ───

┴─(──id──,─ ──┬ ┬─REQuired───── ─)─ ─)──────────��

 └ ┘─=── └ ┘─NOT REQuired─

 6.5.3.1 Syntax Rules

DEFINE APPROVER GROUP group-name

The DEFINE APPROVER GROUP clause identifies the 1- to 8-character
name of the approver group you are creating or updating. You can specify a
partially or fully wildcarded approver group name. A wildcarded approver
group name updates all matching approver group definitions.

TO ENVIRONMENT environment-name

The TO ENVIRONMENT clause identifies the environment to which you are
defining the approver group. You must use a fully specified and
non-wildcarded environment name.

TITLE title-text

The TITLE clause identifies a 1- to 50-character description of the approver
group you are creating or updating. You must specify the TITLE clause if
are creating an approver group. The clause is optional if you are updating an
approver group. If the text contains imbedded spaces, enclose it in single or
double quotation marks.

Chapter 6. Environment Definition SCL 6-35

6.5 The Define Statements

QUORUM SIZE IS value

The QUORUM SIZE CLAUSE IS clause specifies the minimum number of
approvers who must approve a package before it can be executed. The
quorum size is optional when both creating and updating an approver group
definition. If you specify this clause, the value must between 0 and 16. If
you do not specify this clause, the default is 0.

APPROVER EQ/ = id, REQUIRED

 NOT REQUIRED

The APPROVER clause specifies whether the approver ID is required to
approve the package. The clause contains two fields, the approver ID field
and the REQUIRED or NOT REQUIRED field. If you specify more than one
approver ID, enclose the fields in parentheses and separate by commas. For
example, to define IDs USER01 and USER02 as required approvers, the
APPROVER clause would be specified as:

APPROVER=((USER�1,REQUIRED),(USER�2,REQUIRED))

The APPROVER clause is optional when creating an Approver Group
definition. This clause is also optional when updating an Approver Group
definition. An Approver Group without any approvers will signify that
Endevor will use ESI external approvers. An approver group name equals the
external security group or profile name.

Example of Define Approver Group SCL

The following is an example of the DEFINE APPROVER GROUP SCL. The
example creates an Approver Group named ACCTPAY. This group contains
five User IDs. Two of the five User IDs are required for approval. There is
a quorum size of three which means that one of the not required users must
also approve the package.

DEFINE APPROVER GROUP "ACCTPAY1"

TO ENVIRONMENT "DEVEL"

TITLE "Accounts Payable Approver Group"

QUORUM SIZE IS 3

APPROVER EQ ((USER��1, REQUIRED),

 (USER��2, NOT REQUIRED),

 (USER��3, NOT REQUIRED),

 (USER��4, REQUIRED),

(USER��5, NOT REQUIRED)) .

6-36 SCL Reference Guide

6.5 The Define Statements

6.5.4 Define Approver Relation

Use the DEFINE APPROVER RELATION action to create a new approver
relation definition. It is not possible to update an existing approver relation
definition.

 6.5.5 Syntax

��──DEFine APProver RELation─ ─FOR──APProver GROup──group-name──────────�

�─ ─TO─ ─ENVironment──environment-name──SYStem──system-name──────────────�

�─ ─SUBSystem──subsystem-name──TYPe──type-name──────────────────────────�

�─ ──┬ ┬─STAge ID──stage-id───── ──┬ ┬───────────────────────────── ─.─────��
 └ ┘ ─STAge NUMber──stage-no─ │ │┌ ┐─STANdard──
 └ ┘ ─TYPe─ ──┬ ┬──── ──┴ ┴─EMErgency─
 └ ┘─IS─

 6.5.5.1 Syntax Rules

DEFINE APPROVER RELATION

The DEFINE APPROVER RELATION clause indicates that you are creating
a new approver relation definition. You must specify this clause.

FOR APPROVER GROUP group-name

The FOR APPROVER GROUP clause identifies the 1- to 16-character name
of the approver group for which an inventory relationship is being built. You
must use a fully specified and non-wildcarded approver group name.

TO ENVIRONMENT environment-name
 SYSTEM system-name
 SUBSYSTEM subsystem-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no

The TO clause identifies the inventory location to which you are defining the
approver relation. You must specify a fully qualified environment name.

The TO SYSTEM, SUBSYSTEM, TYPE, and STAGE clauses you specify
can be either fully qualified or fully wildcarded. You cannot use partially
wildcarded names.

You must use the STAGE ID clause if you wild card the stage. Values
specified in a wildcarded STAGE clause are not expanded. The approver
group relationship is built with the wildcarded values.

TYPE IS STANDARD/EMERGENCY

Chapter 6. Environment Definition SCL 6-37

6.5 The Define Statements

The TYPE IS STANDARD/EMERGENCY clause specifies the approver type
for this approver group. You must specify this clause when creating an
approver group relation definition.

Example of Define Approver Relation SCL

The following is an example of the DEFINE APPROVER RELATION SCL.
The example creates an Approver Relation for Approver Group ACCTPAY.
This Approver Relation is for the environment DEVEL, system ACCT,
subsystem ACCTPAY, type COBOL, stage number 1.

DEFINE APPROVER RELATION

FOR APPROVER GROUP "ACCTPAY"

 TO ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 SUBSYSTEM "ACCTPAY1"

 TYPE "COBOL"

STAGE NUMBER 1

TYPE IS STANDARD .

6-38 SCL Reference Guide

6.5 The Define Statements

6.5.6 Define Processor Group

Use the DEFINE PROCESSOR GROUP action to create a new or update an
existing processor group definition.

 6.5.7 Syntax

��──DEFine PROcessor GROup──group-name─────────────────────────────────�

�─ ─TO ENVironment──environment-name──SYStem──system-name───────────────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge ID──stage-id───── ────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�──DESCription──description──�

�──¤─ ──┬ ┬─── ─¤──.───��
 ├ ┤─NEXt PROcessor GROup──group-name────────────────────
 ├ ┤─PROcessor OUTput TYPe─ ──┬ ┬────── ──┬ ┬──── ─┤ Option ├─
 │ │└ ┘─NAMe─ └ ┘─IS─
 ├ ┤─GENerate PROcessor─ ──┬ ┬────── ──┬ ┬──── ─┤ Option ├────
 │ │└ ┘─NAMe─ └ ┘─IS─
 ├ ┤─DELete PROcessor─ ──┬ ┬────── ──┬ ┬──── ─┤ Option ├──────
 │ │└ ┘─NAMe─ └ ┘─IS─
 ├ ┤─MOVe PROcessor─ ──┬ ┬────── ──┬ ┬──── ─┤ Option ├────────
 │ │└ ┘─NAMe─ └ ┘─IS─
 │ │┌ ┐─MOVe─────
 ├ ┤─MOVe ACTion USE─ ──┴ ┴─GENerate─ ──┬ ┬─────────── ───────
 │ │└ ┘─PROcessor─
 │ │┌ ┐─GENerate─
 └ ┘─TRANSFer ACTIOn USE─ ──┴ ┴─MOVe───── ──┬ ┬─────────── ───
 └ ┘─PROcessor─

Option:
┌ ┐─ALLow FOREground EXEcution────────

├──processor-name─ ──┼ ┼─────────────────────────────────── ──────────────┤
└ ┘─DO NOT ALLow FOREground EXEcution─

 6.5.7.1 Syntax Rules

DEFINE PROCESSOR GROUP group-name

The DEFINE PROCESSOR GROUP clause identifies the 1- to 8-character
name of the processor group you are creating or updating. The can specify a
partially or fully wildcarded processor group name. A wildcarded processor
group name updates all matching processor group definitions.

TO ENVIRONMENT environment-name
 SYSTEM system-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no

Chapter 6. Environment Definition SCL 6-39

6.5 The Define Statements

The TO clause identifies the inventory location to which the processor group
is defined or is to be defined. Names you specify in the TO clause must all
be fully specified.

DESCRIPTION description

Use the DESCRIPTION clause to enter text of up to 50 characters in length
describing the processor group. If the text contains imbedded spaces, enclose
it in either single or double quotation marks. The description clause is
required when creating a processor group definition and optional when
updating a processor group definition.

NEXT PROCESSOR GROUP group-name

The NEXT PROCESSOR GROUP clause identifies the name of the processor
group at the next map location. The you do next specify the NEXT
PROCESSOR GROUP clause, the clause defaults to the name of the
processor group that you are defining.

PROCESSOR OUTPUT TYPE

The PROCESSOR OUTPUT TYPE designates the kind of output in this
processor group. The character default of 16 is concatenation of type names
and processor group names. This is used with the element registration feature
of 4.0 and can be user defined.

GENERATE/DELETE/MOVE PROCESSOR NAME processor-name

The GENERATE/DELETE/MOVE PROCESSOR NAME clauses identifies a
one- to-eight character alpha-numeric name of the processors that make up the
processor group. The GENERATE/MOVE/DELETE PROCESSOR NAME
clauses are optional when creating or updating a processor group definition.
If you do not specify the clause, the processor name defaults to *NOPROC*.
If the processor name identifies one of Endevor's reserved processor names
(GPPROCSS, DPPROCSS, BASICGEN or BASICDEL), the processor name
converts to *NOPROC*.

6-40 SCL Reference Guide

6.5 The Define Statements

MOVE ACTION USES GENERATE/MOVE PROCESSOR

The MOVE ACTION USES GENERATE/MOVE PROCESSOR clause
indicates whether Endevor is to execute the generate or the move processor as
part of the MOVE action.

TRANSFER ACTION USES GENERATE/MOVE PROCESSOR

The TRANSFER ACTION USES GENERATE/MOVE PROCESSOR clause
indicates whether Endevor is to execute the generate or the move processor as
part of the TRANSFER action.

Example of Define Processor Group SCL

The following is an example of the DEFINE PROCESSOR GROUP SCL.
The example updates processor group COBNBL1. It updates the transfer
action so that the TRANSFER action uses the move processor instead of the
generate processor.

DEFINE PROCESSOR GROUP "COBNBL1"

TO ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 TYPE "COBOL"

STAGE ID "U"

TRANSFER ACTION USES MOVE PROCESSOR .

Chapter 6. Environment Definition SCL 6-41

6.5 The Define Statements

6.5.8 Define Processor Symbol

Use the DEFINE PROCESSOR SYMBOL action to define or update symbols
in processors.

 6.5.9 Syntax

��──DEFine PROcessor SYMbol──�

�─ ─TO─ ─ENVironment──environment-name──SYStem──system-name──────────────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge ID──stage-id───── ────────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

�──PROcessor GROup──group-name───�

�─ ─PROcessor TYPe─ ──┬ ┬─EQ─ ──┬ ┬─GENerate─ ───────────────────────────────�
 └ ┘─=── ├ ┤─MOVe─────
 └ ┘─DELete───

 ┌ ┐─,───
�─ ───

┴─SYMbol──symbol-name─ ──┬ ┬─EQ─ ─override-value─ ─.─────────────────��

 └ ┘─=──

 6.5.9.1 Syntax Rules

DEFINE PROCESSOR SYMBOL

The DEFINE PROCESSOR SYMBOL clause indicates that you are to define
or update symbols in processors. You must specify this clause.

TO ENVIRONMENT environment-name
 SYSTEM system-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no
PROCESSOR GROUP group-name
PROCESSOR TYPE EQ/= GENERATE/MOVE/DELETE

The TO clause identifies the inventory location of the processor group to
which the processor symbols are defined or are to be defined, the processor
group, and a processor type within the group.

6-42 SCL Reference Guide

6.5 The Define Statements

You must fully specify the environment name, system name, and type name.

You can fully specify, partially wildcard or fully wildcard the processor group
name. A wildcarded processor group name updates matching processor
symbolic definitions. The processor group name cannot be '*NOPROC*'.
Specify either a generate, move, or delete processor type.

SYMBOL symbol-name EQ/= override-value

The SYMBOL clause identifies the one- to eight-character name of the
processor symbol you are modifying. The symbol must be defined in the
processor.

The override value identifies the up to 65-character override value to be
associated with the symbol. If the override value contains imbedded single
quotation marks enclose the field in double quotation marks. Likewise, if it
contains imbedded double quotation marks enclose it in single quotation
marks. The override value cannot contain both single and double quotation
marks. You can specify multiple symbolic values by repeating the SYMBOL
clause as many times as needed.

Example of Define Processor Symbol SCL

The following is an example of the DEFINE PROCESSOR SYMBOL SCL.
The example updates processor symbols for processor group COBNBL1.
The symbols for the generate processor are updated.

DEFINE PROCESSOR SYMBOL

 TO ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 TYPE "COBOL"

STAGE ID "U"

PROCESSOR GROUP "COBNBL1"

PROCESSOR TYPE EQ GENERATE

SYMBOL SYSOUT EQ "A"

SYMBOL PARMCOB EQ "NOLIB, LANGLVL(1)"

SYMBOL WRKUNIT EQ "SYSDA"

SYMBOL EXPINC EQ "N" .

Chapter 6. Environment Definition SCL 6-43

6.5 The Define Statements

6.5.10 Define Shipment Destination

Use the DEFINE SHIPMENT DESTINATION action to define or update
destinations to which you ship package outputs.

 6.5.11 Syntax

��──DEFine SHIPMent DESTination──destination-name──DESCription──description─────�

�─ ─TRANSMission METhod──method-name──REMote NODename──node-name─────────────────�

�─ ──┬ ┬── ──────────────────────────────────�
│ │┌ ┐─DO NOT SHIp─

 └ ┘ ──┴ ┴─SHIp──────── ─COMPLementary DATaset─

�──HOSt DATaset PREfix──value──¤─ ──┬ ┬────────────────────────────── ─¤───────────�
 │ │┌ ┐─DELete─
 ├ ┤ ─HOSt DISposition─ ──┴ ┴─KEEp───
 │ │┌ ┐─SYSDA─
 ├ ┤ ─HOSt UNIt─ ──┴ ┴─value─ ────────
 └ ┘─HOSt VOLume SERial──value────

�──REMote DATaset PREfix──value──¤─ ──┬ ┬──────────────────────────────── ─¤───────�
 │ │┌ ┐─DELete─
 ├ ┤ ─REMote DISposition─ ──┴ ┴─KEEp───
 │ │┌ ┐─SYSDA─
 ├ ┤ ─REMote UNIt─ ──┴ ┴─value─ ────────
 └ ┘─REMote VOLume SERial──value────

�──REMote JOBcard─ ──┬ ┬─EQ─ ─┤ JOBCARD ├──.──────────────────────────────────────��
 └ ┘─=──

JOBCARD:
├──(──'jobcard1'─ ──┬ ┬─── ─)──────────┤
 └ ┘ ─,'jobcard2'─ ──┬ ┬──────────────────────────────
 └ ┘ ─,'jobcard3'─ ──┬ ┬─────────────
 └ ┘ ─,'jobcard4'─

 6.5.11.1 Syntax Rules

DEFINE SHIPMENT DESTINATION destination-name

The DEFINE SHIPMENT DESTINATION clause identifies the 1- to
7-character name of the destination you are creating or updating. The
destination name you specify must be a fully qualified value.

DESCRIPTION description

Use the DESCRIPTION clause to enter text of up to 30 characters in length
describing the destination. If the text contains imbedded spaces, enclose it in
either single or double quotation marks. You must specify the
DESCRIPTION clause when creating a shipment destination. The clause is
optional when updating a shipment destination. TRANSMISSION
METHOD method-name

The TRANSMISSION METHOD clause defines the transmission utility that
is to be used to ship the package to the remote destination. The following is

6-44 SCL Reference Guide

6.5 The Define Statements

a list of transmission methods you can use along with the transmission utility
associated with each method:

Transmission Method Transmission Utility

BDT Bulk Data Transfer, Version 2 or greater

BDTNJE Bulk Data Transfer, Version 1 (NJE)

LOCAL IEBCOPY

NDM Network DataMover

NETVIEWFTP NetView File Transfer Program

XCOM XCOM

You must specify the TRANSMISSION METHOD clause when creating a
package shipment destination. The clause is optional when updating a
package shipment destination.

REMOTE NODENAME node-name

The REMOTE NODENAME clause identifies the site to which package
outputs are to be shipped. You must specify the REMOTE NODENAME
clause when creating a shipment destination. The clause is optional when
updating a shipment destination.

Chapter 6. Environment Definition SCL 6-45

6.5 The Define Statements

SHIP/DO NOT SHIP COMPLEMENTARY DATASET

The SHIP/DO NOT SHIP COMPLEMENTARY DATASET clause indicates
whether or not data sets can be shipped along with package shipments. The
default is DO NOT SHIP COMPLEMENTARY DATASET.

HOST DATASET PREFIX value

The HOST DATASET PREFIX clause defines the 1- to-14 character prefix to
be assigned to the staging data sets that are created at the host node. You
must specify the HOST DATASET PREFIX clause when creating a package
shipment destination. The clause is optional when updating a package
shipment destination.

HOST DISPOSITION DELETE/KEEP

The HOST DISPOSITION clause specifies the disposition of the host staging
data sets after the package shipment utility is complete. The default
disposition is DELETE.

HOST UNIT SYSDA/value

The HOST UNIT clause specifies the 1- to-8 character alpha-numeric unit
type on which the staging data set is allocated. The default value is SYSDA.
The utility does not verify that the value you specify is defined to the system.

HOST VOLUME SERIAL value

The HOST VOLUME SERIAL clause identifies the 1- to 6-character volume
on which the host staging data sets will be allocated. The utility does not
verify that the volume serial you specify is defined to the system.

REMOTE DATASET PREFIX value

The REMOTE DATASET PREFIX clause defines the prefix to be assigned to
the staging data sets that are created at the remote node. It can be any
number of data set name qualifiers of up to 14 characters in length. The
clause is required when creating a package shipment destination and optional
when updating a package shipment destination.

REMOTE DISPOSITION DELETE/KEEP

The REMOTE DISPOSITION clause specifies the disposition of the remote
staging data sets after the package shipment utility is complete. The default
disposition is DELETE.

6-46 SCL Reference Guide

6.5 The Define Statements

REMOTE UNIT SYSDA/value

The REMOTE UNIT clause specifies the unit type on which the staging data
set will be allocated. The default value is SYSDA. You can use any string
of up to eight alphanumeric characters. The utility does not verify that the
value you enter is defined to the system.

REMOTE VOLUME SERIAL value

The REMOTE VOLUME SERIAL clause identifies the volume on which the
remote staging data sets will be allocated. You can use any alphanumeric
string of up to six characters in length. The utility does not verify that the
volume serial you enter is defined to the system.

REMOTE JOBCARD EQ/= jobcard

The REMOTE JOBCARD clause specifies the JCL jobcard to be used at the
remote site. If the jobcard statement contains a single quotation mark enclose
the entire jobcard in double quotation marks. Each jobcard can be no longer
than 65 characters, excluding the delimiting quotation marks. The REMOTE
JOBCARD clause is required when creating a package shipment destination
and is optional when updating a package shipment destination.

Chapter 6. Environment Definition SCL 6-47

6.5 The Define Statements

Example of Define Shipment Destination SCL

The following is an example of the DEFINE SHIPMENT DESTINATION
SCL. The example creates a shipment destination named BOSTNDM. The
transmission method is Network DataMover (NDM).

CREATE a Shipment Destination named BOSTNDM. The Transmission
Method will be NDM (Network DataMover).

DEFINE SHIPMENT DESTINATION 'BOSTNDM'

DESCRIPTION 'BOSTON DATA MOVER NODE'

TRANSMISSION METHOD 'NDM'

REMOTE NODENAME 'CHINNDM'

DO NOT SHIP COMPLEMENTARY DATASET

HOST DATASET PREFIX 'USER�1.NDVR'

HOST DISPOSITION DELETE

HOST UNIT SYSDA

REMOTE DATASET PREFIX 'USER�1.NDVR'

REMOTE DISPOSITION DELETE

REMOTE UNIT SYSDA

REMOTE JOBCARD =

 ("//JOBNAME JOB (ACCOUNT),'JOHN DOE'") ,

 "//�" ,

 "//�" ,

 "//�")

6-48 SCL Reference Guide

6.5 The Define Statements

6.5.12 Define Shipment Mapping Rule

Use the DEFINE SHIPMENT MAPPING RULE action to create or update
mapping rules between a host data set name and a remote data set name.

 6.5.13 Syntax

��──DEFine SHIpment MAPping RULe───────────────────────────────────────�

�─ ─TO─ ─DESTination──destination-name──DESCription──description─────────�

�──HOSt DATaset──dataset-name──�

�─ ──┬ ┬─── ──┬ ┬───────── ─.──────��
 └ ┘ ─MAPS TO─ ──┬ ┬────────────────────────────── └ ┘─EXClude─
 └ ┘ ─REMote DATaset──dataset-name─

 6.5.13.1 Syntax Rules

DEFINE SHIPMENT MAPPING RULE

The DEFINE SHIPMENT MAPPING RULE indicates that you are creating or
updating a mapping rule between a host data set name and a remote data set
name. You must specify this clause.

TO DESTINATION destination-name

The TO DESTINATION clause identifies the 1- to 16-character name of an
existing package shipment destination. You must specify a fully specified
value.

DESCRIPTION description

Use the DESCRIPTION clause to enter text of up to 40 characters in length
describing this data set map. If the text you enter contains imbedded spaces
enclose it in either single or double quotation marks. You must specify the
DESCRIPTION clause when creating a shipment mapping rule. You cannot
specify this clause when you are updating a shipment mapping rule. If you
specify the DESCRIPTION clause when updating a shipment mapping rule, a
caution message is issued and the DESCRIPTION clause is ignored.

Chapter 6. Environment Definition SCL 6-49

6.5 The Define Statements

HOST DATASET dataset-name MAPS TO REMOTE DATASET
dataset-name

The HOST DATASET clause identifies the 1- to 44-character name or mask
of the host data set name and the 1- to 44-character name or mask of the
remote data set name. If you do not specify the MAPS TO REMOTE
DATASET clause, the EXCLUDE clause is the default mapping rule. You
must use the HOST DATASET clause when creating a shipment mapping
rule. The clause is optional when updating a shipment mapping rule.

EXCLUDE

Use the EXCLUDE clause if you do not want to transmit the package outputs
of a data set. You can only use the EXCLUDE clause if you do not specify
the MAPS TO REMOTE DATASET clause. The two clauses are mutually
exclusive.

Example of Define Shipment Mapping Rule SCL

The following is an example of the DEFINE SHIPMENT MAPPING RULE
SCL. The example creates a shipment rule for the shipment destination
named BOSTNDM.

DEFINE SHIPMENT MAPPING RULE

TO DESTINATION 'BOSTNDM'

DESCRIPTION "MOVE OBJECTS"

HOST DATASET 'ENDEVOR.QAFIN.OBJLIB�'

MAPS TO REMOTE DATASET 'ENDEVOR.RMTFIN.OBJLIB�' .

6-50 SCL Reference Guide

6.5 The Define Statements

 6.5.14 Define Subsystem

Use the DEFINE SUBSYSTEM action to create or update a subsystem
definition.

 6.5.15 Syntax

��──DEFine SUBSystem──subsystem-name───────────────────────────────────�

�─ ─TO─ ─ENVironment──environment-name──SYStem──system-name──────────────�

�──DESCription──description─ ──┬ ┬──────────────────────────────── ─.────��
 └ ┘ ─NEXt SUBSystem──subsystem-name─

 6.5.15.1 Syntax Rules

DEFINE SUBSYSTEM subsystem-name

The DEFINE SUBSYSTEM clause identifies the 1- to 8-character name of
the subsystem you are creating or updating. You can partially or fully
wildcard the subsystem name. A wildcarded subsystem name updates all
matching subsystem definitions.

TO ENVIRONMENT environment name
 SYSTEM system-name

The TO clause identifies the inventory location to which you are defining the
subsystem. The environment name and system name you use in the TO
clause must be fully specified.

DESCRIPTION description

Use the DESCRIPTION clause to enter text of up to 50 characters in length.
If the text contains imbedded spaces enclose it in either single or double
quotation marks. If you are creating a subsystem definition you must specify
the DESCRIPTION clause. The clause is optional if you are updating the
subsystem definition.

NEXT SUBSYSTEM subsystem-name

The NEXT SUBSYSTEM clause identifies the name of the subsystem in the
next environment. If you do not specify the NEXT SUBSYSTEM clause, it
defaults to the name of the subsystem that you are creating.

Chapter 6. Environment Definition SCL 6-51

6.5 The Define Statements

Example of Define Subsystem SCL

The following is an example of the DEFINE SUBSYSTEM SCL. The
example creates a subsystem named GENLEDG for system ACCT.

DEFINE SUBSYSTEM "GENLEDG"

TO ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

DESCRIPTION "The General Ledger Subsystem"

NEXT SUBSYSTEM "GENLEDG" .

6-52 SCL Reference Guide

6.5 The Define Statements

 6.5.16 Define System

Use the DEFINE SYSTEM clause to create or update system definitions.

 6.5.17 Syntax

��─ ─DEFine SYStem──system-name──TO ENVironment──environment-name────────────────�

�──DESCription──description───�

�──¤─ ──┬ ┬── ─¤─────────────────────�
 ├ ┤─NEXt SYStem──system-name───────────────────────
 │ │┌ ┐─NOT REQuired─
 ├ ┤ ─COMMent─ ──┴ ┴─REQuired───── ─────────────────────
 │ │┌ ┐─NOT REQuired─
 ├ ┤ ─CCId─ ──┴ ┴─REQuired───── ────────────────────────

├ ┤──┬ ┬─┤ DUPlicate ELEment ├─── ───────────────────
│ │└ ┘─┤ DUPlicate PROcessor ├─

 │ │┌ ┐─REQuired─────
 ├ ┤─ELEment JUMp ACKnowledgement─ ──┴ ┴─NOT REQuired─

│ │┌ ┐─IS NOT ACTIVe─
 ├ ┤ ─SIGnout─ ──┴ ┴─IS ACTIVe───── ────────────────────

│ │┌ ┐─IS NOT ACTIVe─
 └ ┘─SIGnout DATaset VALidation─ ──┴ ┴─IS ACTIVe───── ─

�──STAge ONE LOAd LIBRARY─ ──┬ ┬──── ─dataset-name─────────────────────────────────�
 └ ┘─IS─

�─ ──┬ ┬── ────────────────────────────�
 └ ┘─STAge ONE LISt LIBRARY─ ──┬ ┬──── ─dataset-name─
 └ ┘─IS─

�──STAge TWO LOAd LIBRARY─ ──┬ ┬──── ─dataset-name─────────────────────────────────�
 └ ┘─IS─

�─ ──┬ ┬── ─.─────────────────────────��
 └ ┘─STAge TWO LISt LIBRARY─ ──┬ ┬──── ─dataset-name─
 └ ┘─IS─

DUPlicate ELEment:
├─ ──┬ ┬─DUPlicate ELEment──name──CHEck IS ACTIVe─ ──┬ ┬─────────── ─────────────────┤
 │ │└ ┘─┤ error ├─
 └ ┘─DUPlicate ELEment──name──CHEck IS NOT ACTIVe────────────

DUPlicate PROcessor OUTput:
├─ ──┬ ┬─DUPlicate PROcessor OUTput──type──CHEck IS ACTIVe─ ──┬ ┬─────────── ────────┤
 │ │└ ┘─┤ error ├─
 └ ┘─DUPlicate PROcessor OUTput──type──CHEck IS NOT ACTIVe────────────

error:
├─ ──┬ ┬────────────────────────────────────── ────────────────────────────────────┤
 └ ┘ ─error──SEVerity LEVel──is─ ──┬ ┬───────
 └ ┘─W|E|C─

 6.5.17.1 Syntax Rules

DEFINE SYSTEM system-name

The DEFINE SYSTEM clause identifies the 1- to 8-character name of the
system you are creating or updating. You can partially or fully wildcard the
system name. A wildcarded system name updates all matching system
definitions.

Chapter 6. Environment Definition SCL 6-53

6.5 The Define Statements

TO ENVIRONMENT environment-name

The TO ENVIRONMENT clause identifies the environment to which you are
defining the system. The environment name you specify must be fully
qualified and non-wildcarded.

DESCRIPTION description

Use the DESCRIPTION clause to enter text of up to 50 characters in length
describing this system. If the text contains imbedded spaces enclose it in
either single or double quotation marks. You must specify the
DESCRIPTION clause when creating a system definition. The clause is
optional if you are updating the system definition.

NEXT SYSTEM system-name

The NEXT SYSTEM clause identifies the name of the system in the next
environment. If you do not specify the NEXT SYSTEM clause, it defaults to
the name of the system you are creating or updating. COMMENTS
REQUIRED/NOT REQUIRED

The COMMENTS REQUIRED/NOT REQUIRED clause indicates whether
comments are required for actions against elements in this system. The
default is COMMENTS NOT REQUIRED.

CCID REQUIRED/NOT REQUIRED

The CCID REQUIRED/NOT REQUIRED clause indicates whether CCIDs are
required for actions against elements in this system. The default is CCID
NOT REQUIRED.

DUPLICATE ELEMENT name CHEck

The DUPLICATE ELEMENT name CHEck clause is an element name
registration checking feature.

Acceptable values are:

 ■ Y

■ N - Default value

Note: If neither clause is specified then the "DUPLICATE ELEMENT name
CHEck IS NOT ACTIVe" option will be in effect. The severity clause is only
valid after the "CHEck IS ACTIVe" clause. This clause is optional and if
ommitted the default value is set to E.

error SEVERITY LEVEL

The error SEVERITY LEVEL clause is available with DUPLICATE
ELEMENT and is a registration check for message severity levels.

6-54 SCL Reference Guide

6.5 The Define Statements

Acceptable values are:

■ W - Warning

■ C - Caution

■ E - Error

DUPLICATE PROCESSOR OUTPUT TYPE

The duplicate processor output type clause is a processor registration checking
feature.

Acceptable values are:

 ■ Y

■ N - Default value

Note: If neither clause is specified then the "DUPlicate PROCessor OUTput
type CHEck IS NOT ACTive" option will be in effect. The severity clause is
only valid after the "CHEck IS ACTive" clause. This clause is optional and if
omitted the default value is set to E.

error SEVERITY LEVEL

The error severity level clause is available as a PROcessor OUTput
registration check for message severity levels.

Acceptable values are:

■ W - Warning

■ C - Caution

■ E - Error

ELEMENT JUMP ACKNOWLEDGMENT REQUIRED/NOT
REQUIRED

The ELEMENT JUMP ACKNOWLEDGMENT REQUIRED/NOT
REQUIRED clause indicates whether users must use ACKNOWLEDGE ELM
JUMP=Y when moving elements. Endevor uses this field when it finds an
element being moved at a non-mapped stage between the from and to
locations of the move. The default is ELEMENT JUMP
ACKNOWLEDGMENT REQUIRED. For information on moving elements
and element jump acknowledgment see the User Guide.

Chapter 6. Environment Definition SCL 6-55

6.5 The Define Statements

SIGNOUT IS ACTIVE/NOT ACTIVE

The SIGNOUT IS ACTIVE/NOT ACTIVE clause indicates whether the
signin/signout facility is in use for this system. The default is SIGNOUT IS
NOT ACTIVE. Refer to the &U$ENSUSR. for more information on this
facility.

SIGNOUT DATASET VALIDATION IS ACTIVE/NOT ACTIVE

The SIGNOUT DATASET VALIDATION IS ACTIVE/NOT ACTIVE clause
indicates whether data set validation is in use for this system. The default is
SIGNOUT DATASET VALIDATION IS NOT ACTIVE. STAGE
ONE/TWO LOAD LIBRARY

The STAGE LOAD LIBRARY clauses indicate the data set names of the
processor load libraries for the system. The data set name must:

■ Be fully qualified and no longer than 44 characters in length.

■ Be predefined and catalogued in the system catalogue.

■ Be a partitioned data set.

■ Have an undefined record format (DCB=RECFM=U).

You must specify the STAGE LOAD LIBRARY clauses when creating the
system definition. The clauses are optional when updating a system
definition.

STAGE ONE/TWO LIST LIBRARY

The STAGE ONE LIST LIBRARY and the STAGE TWO LIST LIBRARY
identifies the processor listing library for this system.

Example of Define System SCL

The following is an example of the DEFINE SYSTEM SCL. The example
creates a system named ACCT. It uses the optional clauses COMMENTS
REQUIRED, SIGNOUT DATASET VALIDATION IS ACTIVE, and
SIGNOUT IS ACTIVE. It also specifies the location of the optional Stage
One and Stage Two List libraries.

DEFINE SYSTEM "ACCT"

TO ENVIRONMENT "DEVEL"

DESCRIPTION "The Accounting System"

 COMMENTS REQUIRED

SIGNOUT DATASET VALIDATION IS ACTIVE

 SIGNOUT IS ACTIVE

STAGE ONE LOAD LIBRARY IS "ENDEVOR.LOAD1.ACCT"

STAGE ONE LIST LIBRARY IS "ENDEVOR.LIST1.ACCT"

STAGE TWO LOAD LIBRARY IS "ENDEVOR.LOAD2.ACCT"

STAGE TWO LIST LIBRARY IS "ENDEVOR.LIST2.ACCT" .

6-56 SCL Reference Guide

6.5 The Define Statements

 6.5.18 Define Type

Use the DEFINE TYPE action to create or update type definitions.

 6.5.19 Syntax

6.5.20 Define Type Syntax

Chapter 6. Environment Definition SCL 6-57

6.5 The Define Statements

��─ ─DEFine TYPe──type-name─ ─TO ENVironment──environment-name──SYStem──system-name──────────�

�─ ──┬ ┬─STAge ID──stage-id───── ─DESCription──description─ ──┬ ┬────────────────────── ─────────�
 └ ┘ ─STAge NUMber──stage-no─ └ ┘ ─NEXt TYPe──type-name─

�─ ─BASe LIBRARY─ ──┬ ┬──── ─dataset-name──DELta LIBRARY─ ──┬ ┬──── ─dataset-name─────────────────�
 └ ┘─IS─ └ ┘─IS─

�─ ──┬ ┬─────────────────────────────────────── ──┬ ┬──────────────────────────── ──────────────�
 └ ┘─INCLUDE LIBRARY─ ──┬ ┬──── ─dataset-name─ │ │┌ ┐─DO NOT EXPand INCLUDES─
 └ ┘─IS─ └ ┘──┴ ┴─EXPand INCLUDES────────

�─ ──┬ ┬─── ──�
 └ ┘─SOUrce OUTput LIBRARY─ ──┬ ┬──── ─dataset-name─
 └ ┘─IS─

 ┌ ┐─�NOPROC�───
�──DEFAult PROcessor GROup─ ──┬ ┬──── ──┴ ┴─group-name─ ──�
 └ ┘─IS─

�─ ──┬ ┬─── ──┬ ┬────────────────────────── ────────────�
 │ │┌ ┐─FORWard─ │ │┌ ┐─COMPRess BASe────────
 └ ┘─ELEment DELta FORMat─ ──┬ ┬──── ──┴ ┴─REVerse─ └ ┘──┴ ┴─DO NOT COMPRess BASe─
 └ ┘─IS─

�─ ──┬ ┬─── ────────────────────────────�
 │ │┌ ┐─5�────
 └ ┘ ─REGression PERcentage─ ──┬ ┬─────────── ──┬ ┬──── ──┴ ┴─value─
 └ ┘─THReshold─ └ ┘─IS─

�─ ──┬ ┬── ───────────────────────────────────────�
 │ │┌ ┐─CAUtion─────
 └ ┘ ─REGression SEVerity─ ──┬ ┬──── ──┼ ┼─INFormation─
 └ ┘─IS─ ├ ┤─WARning─────
 └ ┘─ERRor───────

�──SOUrce ELEment LENgth─ ──┬ ┬──── ─value──�
 └ ┘─IS─

�──COMPAre─ ──┬ ┬────── ─COLumn──value─ ──┬ ┬──── ─value───�
 └ ┘─FROm─ └ ┘─TO─

�─ ──┬ ┬─────────────────────────────────────── ──�
 │ │┌ ┐ ─CONsolidate ELEment─ ──┬ ┬──────── ──
 │ ││ │└ ┘─LEVELS─

└ ┘──┴ ┴─DO NOT CONsolidate ELEment LEVELS─

�─ ──┬ ┬─── ──�
 │ │┌ ┐─97────
 └ ┘─CONsolidate ELEment AT LEVel─ ──┴ ┴─value─

�─ ──┬ ┬── ─────────────────────────────────�
 │ │┌ ┐─5�────
 └ ┘─NUMber OF ELEment LEVELS TO CONsolidate─ ──┴ ┴─value─

�─ ─LANguage─ ──┬ ┬──── ─language-name─ ──┬ ┬─PANvalet── ─LANguage─ ──┬ ┬──── ─language-name─────────�
 └ ┘─IS─ └ ┘─LIBRARian─ └ ┘─IS─

�─ ──┬ ┬── ─────────────────────────────────────�
 └ ┘─HOMe OPErating SYStem─ ──┬ ┬──── ──┬ ┬─WORkstation─
 └ ┘─IS─ └ ┘─MVS─────────

�─ ──┬ ┬── ─────────────────────────────────�
 └ ┘─WORkstation FILe EXTension─ ──┬ ┬──── ─file-extension─
 └ ┘─IS─

�─ ──┬ ┬─── ──�
 │ │┌ ┐ ─CONsolidate COMPOnent─ ──┬ ┬──────── ──
 │ ││ │└ ┘─LEVELS─

└ ┘──┴ ┴─DO NOT CONsolidate COMPOnent LEVELS─

�─ ──┬ ┬─── ──�
 │ │┌ ┐─FORWard─
 └ ┘─COMPOnent DELTa FORMat─ ──┬ ┬──── ──┴ ┴─REVerse─
 └ ┘─IS─

�─ ──┬ ┬─── ──�
 │ │┌ ┐─99────
 └ ┘─CONsolidate COMPOnent AT LEVel─ ──┴ ┴─value─

�─ ──┬ ┬── ───────────────────────────────�
 │ │┌ ┐─5�────
 └ ┘─NUMber OF COMPOnent LEVELS TO CONsolidate─ ──┴ ┴─value─

�─ ──┬ ┬───────────────────────────── ─.───��
 └ ┘ ─HFS RECFM─ ──┬ ┬──── ──┬ ┬─COMP─
 └ ┘─IS─ ├ ┤─F────
 ├ ┤─CR───
 ├ ┤─CRLF─
 ├ ┤─LF───
 ├ ┤─NL───
 ├ ┤─U────
 └ ┘─V────

6-58 SCL Reference Guide

6.5 The Define Statements

 6.5.20.1 Syntax Rules

DEFINE TYPE type-name

The DEFINE TYPE clause identifies the 1- to 8-character name of the type
you are defining or updating. You can partially or fully wildcard the type
name. A wildcarded type name updates all matching type definitions.

If you specify PROCESS as the type name you must specify the language
name in the LANGUAGE clause as CNTLPROC. If you use the
PANVALET/LIBRARIAN LANGUAGE clause, the language name you
specify cannot be CNTLPROC. Likewise, if the type name you specify in the
DEFINE TYPE clause is not PROCESS, then the language name you specify
in the LANGUAGE clause and the PANVALET/LIBRARIAN cannot be
CNTLPROC.

TO ENVIRONMENT environment-name
 SYSTEM system-name

STAGE ID stage-id
STAGE NUMBER stage-no

The TO clause identifies the inventory location to which you are defining or
updating the type. Names you specify in the TO clause must be fully
specified and non-wildcarded. Enter the system name and either a stage ID or
stage number to which the type is defined.

DESCRIPTION description

Use the DESCRIPTION clause to enter text of up to 50 characters in length
describing this type. If the text contains imbedded spaces enclose it in either
single or double quotation marks. You must use the DESCRIPTION clause
when creating a type definition. The clause is optional when updating a type
definition.

NEXT TYPE type-name

The NEXT TYPE clause identifies at the name of the type at the next map
location. If you do not specify the NEXT TYPE clause, it defaults to the
name of the type you are creating or updating.

BASE LIBRARY IS dataset-name

The BASE LIBRARY clause identifies the base library for this type. You
must use a fully qualified data set name of no longer than 44 characters in
length. The data set can include the &C1 symbolic variables. If the data set
name does not contain a &C1 symbolic, the data set must be catalogued. If
the data set name does not contain any &C1 symbolic values and the data set
organization is partitioned, the data set record length must be greater than or
equal to the SOURCE ELEMENT LENGTH. You must specify the BASE

Chapter 6. Environment Definition SCL 6-59

6.5 The Define Statements

LIBRARY clause when creating a new type definition. The clause is optional
when updating a type definition.

DELTA LIBRARY IS dataset-name

The DELTA LIBRARY clause identifies the name of the delta library for the
type. You must use a fully qualified data set name of no longer than 44
characters in length. the data set can include the &C1 symbolic variables. If
the data set name does not contain a &C1 symbolic, the data set must be
catalogued. If the data set name does not contain any &C1 symbolic values
and the data set organization is partitioned, the data set record length must be
greater than or equal to the SOURCE ELEMENT LENGTH. You must
specify the DELTA LIBRARY clause when creating a new type definition.
The clause is optional when updating a type definition.

INCLUDE LIBRARY IS dataset-name
EXPAND/DO NOT EXPAND INCLUDES

6-60 SCL Reference Guide

6.5 The Define Statements

The INCLUDE LIBRARY clause identifies the name of the partitioned data
set, CA-Panvalet, CA-Librarian, or Endevor LIB for the type. You must use
a fully qualified data set name of no longer than 44 characters in length. If
the data set name does not contain a &C1 symbolic, the data set must be
catalogued. If the data set name does not contain any &C1 symbolic values
and the data set organization is partitioned, the data set record length must be
greater than or equal to the SOURCE ELEMENT LENGTH.

You can specify if members can be expanded from this library. The default
is DO NOT EXPAND INCLUDES. You can only specify the EXPAND
INCLUDES clause if you specify the INCLUDE LIBRARY clause.

SOURCE OUTPUT LIBRARY IS dataset-name

The SOURCE OUTPUT LIBRARY clause identifies the data set name of the
source output library. If the data set name does not contain a &C1 symbolic,
the data set must be catalogued. If the data set name does not contain any
&C1 symbolic values and the data set organization is partitioned, the data set
record length must be greater than or equal to the SOURCE ELEMENT
LENGTH.

DEFAULT PROCESSOR GROUP IS *NOPROC*/group-name

The DEFAULT PROCESSOR GROUP clause identifies the processor group
for this type. The processor group name you use must be fully specified and
not contain imbedded blanks. The default is *NOPROC*.

If you are creating a type definition and you do not specify the DEFAULT
PROCESSOR GROUP clause and the type name you specify on the DEFINE
TYPE action is 'PROCESS', the default value is set to PROCESS. If you are
creating a type definition and you do not specify the DEFAULT
PROCESSOR GROUP clause and the type name you specify in the DEFINE
TYPE action is not 'PROCESS', the default value is set to *NOPROC*.

ELEMENT DELTA FORMAT IS FORWARD/REVERSE/FULL-IMAGE

The ELEMENT DELTA FORMAT clause specifies the delta storage format
for elements of this type. If you do not specify the ELEMENT DELTA
FORMAT clause and you are creating a type definition, the delta format
defaults to FORWARD.

Chapter 6. Environment Definition SCL 6-61

6.5 The Define Statements

COMPRESS/DO NOT COMPRESS BASE

The COMPRESS BASE clause indicates whether to compress the base form
of elements stored in reverse delta format. The default is COMPRESS BASE.

REGRESSION PERCENTAGE THRESHOLD IS 50/value

The REGRESSION PERCENTAGE clause specifies the maximum regression
percent for this type. You must specify a numeric value between 1 and 99,
inclusive. If you are creating a type definition and do not specify this clause,
the value defaults to 50.

REGRESSION SEVERITY IS
INFORMATION/WARNING/CAUTION/ERROR/

The REGRESSION SEVERITY IS clause identifies the severity of the error
message that issues when Endevor detects regression. The default is
CAUTION.

SOURCE ELEMENT LENGTH IS value

The SOURCE ELEMENT LENGTH identifies the logical record length in
source statements. The maximum allowable value is 32,000. If the type is
PROCESS, the source element must be exactly 80. You must specify the
SOURCE ELEMENT LENGTH clause when creating a type definition. The
clause is optional when updating a type definition.

COMPARE FROM COLUMN value TO value

The COMPARE FROM COLUMN clause identifies the position within each
statement at which Endevor begins comparing to identify changed statements.
The values you specify must be between one and the SOURCE ELEMENT
LENGTH. The value you specify in the COMPARE FROM clause must be
less than or equal to the value you specify in the COMPARE TO clause.
You must specify the COMPARE FROM COLUMN clause when creating a
type definition. The clause is optional when updating a type definition.

6-62 SCL Reference Guide

6.5 The Define Statements

CONSOLIDATE/DO NOT CONSOLIDATE ELEMENT LEVELS

The CONSOLIDATE ELEMENT LEVEL clause identifies whether or not
Endevor is to consolidate element change levels. The default is to consolidate
change levels.

If you specify the DO NOT CONSOLIDATE ELEMENT LEVELS clause
you must set the corresponding NUMBER OF ELEMENT LEVELS TO
CONSOLIDATE clause to zero. If you are updating a type definition, and
specify the DO NOT CONSOLIDATE ELEMENT LEVELS clause but do not
specify the NUMBER OF ELEMENT LEVELS TO CONSOLIDATE clause,
the NUMBER OF LEVELS TO CONSOLIDATE clause is set to zero and
you receive a warning message.

If you specify the CONSOLIDATE ELEMENT LEVELS clause, the value
you specify in the corresponding NUMBER OF ELEMENT LEVELS TO
CONSOLIDATE clause must be greater than zero.

CONSOLIDATE ELEMENT AT LEVEL 99/value

The CONSOLIDATE ELEMENT AT LEVEL clause specifies the level
number at which Endevor consolidates change levels. The default is 99.

NUMBER OF ELEMENT LEVELS TO CONSOLIDATE 50/value

The NUMBER OF LEVELS TO CONSOLIDATE clause indicates the
number of deltas to consolidate when the number of levels reaches the figure
in the CONSOLIDATE ELEMENT AT LEVEL clause. You can specify a
value between 1 and 99. The default is 50.

HFS RECFM

Identifies the record delimiter used in a HFS file. A record delimiter is
necessary due to the nature of HFSfiles. HFS files contain one large data
stream; therefore, a delimiter is used to identify individual records within that
data stream. If a delimiter is not specified, the system defaults to NL.

Acceptable delimiter values are:

■ COMP—Variable length records compressed by Endevor

■ CR—Carriage return. ASCII and EBCDIC value "CR". The hex value is
'0D'.

■ CRLF—EBCDIC Carriage return\line feed. The hex value is '0D25'.

 ■ F—Fixed Length

■ LF—EBCDIC line feed. The hex value is '25'.

Chapter 6. Environment Definition SCL 6-63

6.5 The Define Statements

■ NL—Default. EBCDIC new line character. This is the delimiter is used
by the OEDIT and OBROWS Eeditor.

■ V—Variable. The first two bytes of the record contain the RDW (record
descriptor word). The RDW contains the length of the entire record,
including the RDW.

6-64 SCL Reference Guide

6.5 The Define Statements

LANGUAGE IS language-name

The LANGUAGE clause defines the source language of the type. You can
use any alphanumeric string of up to eight characters in length. You must
specify the LANGUAGE clause when creating a type definition. The clause
is optional when updating a type definition.

If the language you specify in the LANGUAGE IS clause is one of the
languages in the following table, the values you specify in the COMPARE
FROM clause are compared to determine if they fall within the following
ranges.

Language Compare From Compare To

ANSCOBOL 7 72

ASM 1 72

ASSEMBLR 1 72

BAL 1 72

COBOL 7 72

COBOL-72 7 72

COBOL-74 7 72

COBOLF 7 72

COBOLVS 7 72

DATA 1 8

FORTRAN 1 72

FORT 1 72

JCL 1 72

LNKCARD 1 72

PL1 1 72

PLI 1 72

PL/1 1 72

PL/I 1 72

RPG 6 74

Chapter 6. Environment Definition SCL 6-65

6.5 The Define Statements

PANVALET/LIBRARIAN LANGUAGE IS language-name

The PANVALET/LIBRARIAN LANGUAGE clause identifies the
CA-Panvalet or CA-Librarian source language for this type. You must
specify this clause when creating a type definition and if CA-Panvalet or
CA-Librarian support is not active. The clause is optional when updating a
type definition. If you do not specify the PANVALET/LIBRARIAN
LANGUAGE clause but specify a LANGUAGE clause, Endevor uses the
language name in the LANGUAGE clause for the PANVALET/LIBRARIAN
LANGUAGE.

The following table lists acceptable names for CA-Panvalet as well as values
within which the names must fall for the COMPARE FROM clause.

CA-Panvalet Language Compare From Compare To

ALC 1 72

ANSCOBOL 7 72

AUTOCODE 6 75

BAL 1 72

COBOL 7 72

COBOL-72 7 72

DATA 1 8

EZPLUS 7 8

FORTRAN 1 72

JCL 1 72

OBJECT 1 72

OTHER 1 72

PL/1 1 72

PL/I 1 72

RPG 6 74

TELON 7 8

USER180 7 8

USER780 7 8

6-66 SCL Reference Guide

6.5 The Define Statements

The following table lists acceptable names for CA-Librarian as well as values
within which the names must fall for the COMPARE FROM clause.

CA-Librarian Language Compare From Compare To

ASM 1 72

COB 7 72

DAT 1 80

FOR 1 72

FRG 0 0

FRH 0 0

GIS 0 0

GOF 0 0

JCL 1 72

PLF 0 0

PLI 1 72

RPG 6 74

TXT 1 80

VSB 0 0

Chapter 6. Environment Definition SCL 6-67

6.5 The Define Statements

HOME OPERATING SYSTEM IS WORKSTATION/OS/390

The HOME OPERATING SYSTEM clause indicates the platform on which
an element of this type is created.

WORKSTATION FILE EXTENSION IS file-extension

The WORKSTATION FILE EXTENSION clause identifies the file extension
to be used on workstation or LAN platforms for elements of this type.

CONSOLIDATE/DO NOT CONSOLIDATE COMPONENT LEVELS

The CONSOLIDATE COMPONENT LEVEL clause identifies whether or not
Endevor is to consolidate component change levels. The default is to
consolidate change levels.

If you specify the DO NOT CONSOLIDATE COMPONENT LEVELS clause
you must set the corresponding NUMBER OF COMPONENT LEVELS TO
CONSOLIDATE clause to zero. If you are updating a type definition and
specify the DO NOT CONSOLIDATE COMPONENT LEVELS clause but do
not specify the NUMBER OF COMPONENT LEVELS TO CONSOLIDATE
clause, the NUMBER OF COMPONENTS LEVELS TO CONSOLIDATE
clause is set to zero and you receive a warning message.

If you specify the CONSOLIDATE COMPONENT LEVELS clause, the value
you specify in the corresponding NUMBER OF COMPONENTS LEVELS
TO CONSOLIDATE clause must be greater than zero.

COMPONENT DELTA FORMAT IS FORWARD/REVERSE

The COMPONENT DELTA FORMAT clause specifies the delta storage
format for component list information. If you do not specify this clause and
you are creating a type definition, the delta format defaults to FORWARD.

CONSOLIDATE COMPONENT AT LEVEL 99/value

The CONSOLIDATE COMPONENT AT LEVEL clause specifies the level
number at which Endevor consolidates change levels. You can specify a
value between 1 and 99. The default is 99.

NUMBER OF COMPONENT LEVELS TO CONSOLIDATE 50/value

The NUMBER OF COMPONENT LEVELS TO CONSOLIDATE clause
indicates the number of deltas to consolidate when the number of levels
reaches the figure in the CONSOLIDATE COMPONENTS AT LEVEL
clause. You can specify a value between 1 and 99. The default is 50.

6-68 SCL Reference Guide

6.5 The Define Statements

Example of Define Type SCL

The following is an example of the DEFINE TYPE SCL. The example
creates a type named COBOL. It also uses the optional bolded clauses.

DEFINE TYPE "COBOL"

TO ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

STAGE NUMBER 1

DESCRIPTION "The TYPE COBOL"

BASE LIBRARY IS "ENDEVOR.BASE1.SOURCE"

DELTA LIBRARY IS "ENDEVOR.DELTA1.SOURCE"

INCLUDE LIBRARY IS "ENDEVOR.INCLLIB.COPYBOOK"

DEFAULT PROCESSOR GROUP IS "COBNBL1"

ELEMENT DELTA FORMAT IS REVERSE

SOURCE ELEMENT LENGTH IS 8�

COMPARE FROM COLUMN 7 TO 72

CONSOLIDATE ELEMENT AT LEVEL 8�

NUMBER OF ELEMENT LEVELS TO CONSOLIDATE 3�

LANGUAGE IS "COBOL"

PANVALET LANGUAGE IS "COBOL" .

Chapter 6. Environment Definition SCL 6-69

6.5 The Define Statements

6.5.21 Define Type Sequence

Use the DEFINE TYPE SEQUENCE action to update the relative sequence of
processing for the various element types defined within a system. The
DEFINE TYPE SEQUENCE action merges the existing type sequence
information with the sequence information you specify in the DEFINE TYPE
SEQUENCE action.

Note: It is not possible to create a type sequence using the DEFINE TYPE
SEQUENCE action. The type sequence definition is automatically created
when you define a new system.

 6.5.22 Syntax

��──DEFine TYPe SEQuence─ ─TO──ENVironment──environment-name────────────�

�─ ─SYStem──system-name─ ──┬ ┬─STAge ID──stage-id───── ────────────────────�
 └ ┘ ─STAge NUMber──stage-no─

 ┌ ┐─,───────────────────────────
�──SEQuence─ ──┬ ┬─EQ─ ─(─ ───

┴─(type-name,sequence number)─ ─)──.─────────��

 └ ┘─=──

 6.5.22.1 Syntax Rules

DEFINE TYPE SEQUENCE

The DEFINE TYPE SEQUENCE clause indicates that you are updating the
relative sequence of processing for the various element types defined within a
system. You must specify this clause.

TO ENVIRONMENT environment-name
 SYSTEM system-name

STAGE ID stage-id
STAGE NUMBER stage-no

The TO clause identifies the inventory location to which you are defining the
type sequence. Names you specify on the TO clause must be fully qualified.

6-70 SCL Reference Guide

6.5 The Define Statements

SEQUENCE EQ/= type-name,sequence number

The SEQUENCE clause defines the processing sequence for processors for
the types you indicate. The SEQUENCE clause contains a list of type name
and sequence number pairs. The type name represents an existing element
type name that must be defined to the system and stage you specify. The
sequence number is a number between 0 and 999 that is not a multiple of 10.
You can specify type names and sequence numbers more than once. You
must specify at least one type name and sequence number pair. Enclose
multiple pairs in parentheses and separate by commas. For example, to define
the type sequence for types COBOL and COPYBOOK, the SEQUENCE
clause would be specified as:

 SEQUENCE=((COBOL,15),(COPYBOOK,25))

The DEFINE TYPE SEQUENCE action merges the existing type sequence
information with the sequence information you specify in the DEFINE TYPE
SEQUENCE action. The merged information is used to create the new type
sequence record. The existing type sequence numbers are assigned 10 and are
incremented by 10. For example, assume the type sequence record for system
Payroll is defined as follows:

 COPYBOOK, MACRO, COBOLPGM, ASSEMPGM, JCL.

The COPYBOOK type is assigned sequence number 10, MACRO is assigned
20, COBOLPGM is assigned 30 and so on. Further, assume that the DEFINE
TYPE SEQUENCE action specified the following SEQUENCE clause:

SEQUENCE=((COBOLPGM,35),(ASSEMPGM,25)).

The updated TYPE SEQUENCE record would be defined as follows:

 COPYBOOK, MACRO, ASSEMPGM, COBOLPGM,JCL

Chapter 6. Environment Definition SCL 6-71

6.5 The Define Statements

Example of Define Type Sequence SCL

The following is an example of the DEFINE TYPE SEQUENCE SCL. The
example updates the type sequence for system ACCT.

DEFINE TYPE SEQUENCE

TO ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

STAGE ID "U"

 SEQUENCE = ((LINK, �5),

 (COBOL, 15),

 (ASM, 25),

(JCL, 35)) .

Before the update the sequence numbers are:

LINK = 5

COBOL = 15

ASM = 25

JCL = 35

After the update the sequence numbers assigned are:

LINK = 1�

COBOL = 2�

ASM = 3�

JCL = 4�

6-72 SCL Reference Guide

6.5 The Define Statements

6.6 The Delete Statements

 6.6.1 Overview

Use DELETE statements to delete existing environment definitions. The
DELETE action will not delete an environment definition if any elements are
defined to the environment definition. For example, you cannot delete a
system if any subsystems or types are defined to that system. You must
delete the subsystems and types before you can delete the system.

Note: There is no action to delete a type sequence definition. The DELETE
SYSTEM action deletes the type sequence definitions.

The following general conventions apply to all DELETE statements:

■ Names you specify in the DELETE clause can have a maximum of 8
characters with the exception of SHIPMENT DESTINATION, which can
be no longer than 7 characters, and APPROVER GROUP, which can be
no longer than 16 characters.

■ The DELETE action allows wildcarded names in all non-environment
inventory location fields.

■ Environment names you specify in the FROM clause must all be fully
specified.

■ You must enclose names that contain only numeric characters in single or
double quotation marks.

■ Names cannot include imbedded spaces, non-alphabetical, non-numeric,
or non-national characters.

Chapter 6. Environment Definition SCL 6-73

6.6 The Delete Statements

6.6.2 Delete Approver Group

Use the DELETE APPROVER GROUP action to delete approver group
definitions.

 6.6.3 Syntax

��──DELete APProver GROup──group-name──────────────────────────────────�

�─ ─FROm──ENVironment──environment-name─────────────────────────────────�

�─ ──┬ ┬───────────────────────────────────── ─.─────────────────────────��
 │ │┌ ┐─,───────
 └ ┘ ─APProver─ ──┬ ┬─EQ─ ─(─ ───

┴─user-id─ ─)─

 └ ┘─=──

 6.6.3.1 Syntax Rules

DELETE APPROVER GROUP group-name

The DELETE APPROVER GROUP clause identifies the 1- to 8-character
name of the approver group you are deleting. You can use a partially or fully
wildcarded approver group name.

FROM ENVIRONMENT environment-name

The FROM clause identifies the environment location of the approver group
you are deleting. You must specify a fully qualified environment name.

APPROVER EQ/= user-id

The APPROVER clause identifies one or more approver user IDs to be
deleted from the Approver Group definition. If you specify more than one
user ID, enclose the IDs in parentheses and separate by commas. If you do
not specify the APPROVER clause, Endevor deletes the entire Approver
Group definition.

6-74 SCL Reference Guide

6.6 The Delete Statements

Example of Delete Approver Group SCL

The following is an example of the DELETE APPROVER GROUP SCL.
The example deletes certain approvers from the approver group named
ACCTPAY1. Using the DELETE statement in this way acts like an update.
The list of users that are currently in approver group ACCTPAY1 are
(USER001, USER002, USER003, USER004, USER005). This example
removes USER001 and USER004 from the Approver Group.

DELETE APPROVER GROUP "ACCTPAY1"

FROM ENVIRONMENT "DEVEL"

APPROVER EQ (USER��1,

 USER��4).

Chapter 6. Environment Definition SCL 6-75

6.6 The Delete Statements

6.6.4 Delete Approver Relation

Use the DELETE APPROVER RELATION action to delete an approver
relation definition.

 6.6.5 Syntax

��──DELete APProver RELation──FOR APProver GROup──group-name───────────�

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ─SUBSystem──subsystem-name──TYPe──type-name──────────────────────────�

�─ ──┬ ┬─STAge ID──stage-id───── ──┬ ┬───────────────────────────── ─.─────��
 └ ┘ ─STAge NUMber──stage-no─ │ │┌ ┐─STANdard──
 └ ┘ ─TYPe─ ──┬ ┬──── ──┴ ┴─EMErgency─
 └ ┘─IS─

 6.6.5.1 Syntax Rules

DELETE APPROVER RELATION

The DELETE APPROVER RELATION clause indicates that you are deleting
a approver relation definition. You must specify this clause.

FOR APPROVER GROUP group-name

The FOR APPROVER GROUP clause identifies the name of the approver
group to which the approver relationship exists. You can use a partially or
fully wildcarded approver group name. If you wildcard the approver group
name it will not be expanded.

FROM ENVIRONMENT environment-name
 SYSTEM system-name
 SUBSYSTEM subsystem-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no

The FROM clause identifies the inventory location to which the approver
group is related. You must use a must be fully specified environment name.
You can fully specify or fully wildcard the system name, subsystem name,
and type name. They cannot be partially wildcarded.

6-76 SCL Reference Guide

6.6 The Delete Statements

TYPE IS STANDARD/EMERGENCY

The TYPE IS clause identifies the approver type for this approver group. An
approver group designated as standard can only approve standard packages.
Likewise, an approver group designated as emergency can only approve
emergency packages. The default is TYPE IS STANDARD.

Example of Delete Approver Relation SCL

The following is an example of the DELETE APPROVER RELATION SCL.
The example deletes an approver relation for approver group ACCTPAY1.

DELETE APPROVER RELATION

FOR APPROVER GROUP "ACCTPAY1"

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 SUBSYSTEM "GENLEDG"

 TYPE "COBOL"

STAGE NUMBER 1

TYPE IS STANDARD .

Chapter 6. Environment Definition SCL 6-77

6.6 The Delete Statements

6.6.6 Delete Processor Group

Use the DELETE PROCESSOR GROUP action to delete processor group
definitions. The DELETE PROCESSOR GROUP action also deletes all
processor group symbols associated with the processor group.

Note: You cannot delete a processor group if the processor group is
associated with an element at that stage.

 6.6.7 Syntax

��──DELete PROcessor GROup──group-name─────────────────────────────────�

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name────────────�

�─ ─TYPe──type-name─ ──┬ ┬─STAge ID──stage-id───── ─.─────────────────────��
 └ ┘ ─STAge NUMber──stage-no─

 6.6.7.1 Syntax Rules

DELETE PROCESSOR GROUP group-name

The DELETE PROCESSOR GROUP clause identifies the 1- to 8-character
name of the processor group you are deleting. You can partially or fully
wildcard the processor group name.

FROM ENVIRONMENT environment-name
 SYSTEM system-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no

The FROM clause identifies the inventory location to which the processor
group you are deleting is defined. Names you use in the FROM clause must
be fully specified.

Example of Delete Processor Group SCL

The following is an example of the DELETE PROCESSOR GROUP SCL.
The example deletes all processor groups in environment DEVEL, system
ACCT, type COBOL, and stage ID "U".

DELETE PROCESSOR GROUP "�"

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 TYPE "COBOL"

STAGE ID "U".

6-78 SCL Reference Guide

6.6 The Delete Statements

6.6.8 Delete Processor Symbol

Use the DELETE PROCESSOR SYMBOL action to delete processor symbol
overrides.

 6.6.9 Syntax

��──DELete PROcessor SYMbol─ ─FROm──ENVironment──environment-name───────�

�─ ─SYStem──system-name─ ─TYPe──type-name─ ──┬ ┬─STAge ID──stage-id───── ───�
 └ ┘ ─STAge NUMber──stage-no─

�──PROcessor GROup──group-name───�

�─ ─PROcessor TYPe─ ──┬ ┬─EQ─ ──┬ ┬─GENerate─ ───────────────────────────────�
 └ ┘─=── ├ ┤─MOVe─────
 └ ┘─DELete───

�─ ──┬ ┬─────────────────────────────────────── ─.───────────────────────��
 │ │┌ ┐─,───────────
 └ ┘ ─SYMbol─ ──┬ ┬─EQ─ ─(─ ───

┴─symbol-name─ ─)─

 └ ┘─=──

 6.6.9.1 Syntax Rules

DELETE PROCESSOR SYMBOL

The DELETE PROCESSOR SYMBOL clause indicates that you are deleting
symbols in processors. You must specify this clause.

FROM ENVIRONMENT environment-name
 SYSTEM system-name
 TYPE type-name

STAGE ID stage-id
STAGE NUMBER stage-no
PROCESSOR GROUP group-name
PROCESSOR TYPE EQ/=GENERATE/MOVE/DELETE

The FROM clause identifies the inventory location of the processor group to
which the processor symbols are defined, the processor group name, and a
processor type within the group. The environment name, system name, and
type name you specify in the FROM clause must all be fully specified.

You can fully specify, partially wildcard or fully wildcard the processor group
name. The processor group must exist in the processor load library. The
processor group name cannot be '*NOPROC*. Specify either a generate,
move, or delete processor type for this processor symbol.

Chapter 6. Environment Definition SCL 6-79

6.6 The Delete Statements

SYMBOL EQ/= symbol-name

The SYMBOL clause identifies one or more symbol names that are to be
deleted from the symbol override. If you specify more than one name,
enclose the symbol names in parentheses and separate by commas. Deleted
symbols revert to the defaults specified in the processor definition. If you
omit the SYMBOL clause, all the symbols associated with the processor
group are deleted.

Example of Delete Processor Symbol SCL

The following is an example of the DELETE PROCESSOR SYMBOL SCL.
The example deletes all generate processor symbols from processor group
COBNBL1 in environment DEVEL, system ACCT, and stage ID U.

DELETE PROCESSOR SYMBOL

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

 TYPE "COBOL"

STAGE ID "U"

PROCESSOR GROUP "COBNBL1"

 PROCESSOR TYPE GENERATE.

 SYMBOL EQ SYMBOL1

 SYMBOL EQ SYMBOL2.

6-80 SCL Reference Guide

6.6 The Delete Statements

6.6.10 Delete Shipment Destination

Use the DELETE SHIPMENT DESTINATION clause to delete destinations
to which you ship package outputs.

Note: The DELETE SHIPMENT DESTINATION clause also deletes all the
data set mapping rules associated with the destination.

 6.6.11 Syntax

��──DELete SHIPMent DESTination──destination-name──.──────────────────��

 6.6.11.1 Syntax Rules

DELETE SHIPMENT DESTINATION destination-name

The DELETE SHIPMENT DESTINATION clause identifies the 1- to
7-character name of the destination you are deleting. You can partially or
fully wildcard the destination name.

Example of Delete Shipment Destination SCL

The following is an example of the DELETE SHIPMENT DESTINATION
SCL. The example deletes the shipment destination named "BOSTNDM".

 DELETE SHIPMENT DESTINATION "BOSTNDM" .

Chapter 6. Environment Definition SCL 6-81

6.6 The Delete Statements

6.6.12 Delete Shipment Mapping Rule

Use the DELETE SHIPMENT MAPPING RULE action to delete mapping
rules between a host data set name and a remote data set name.

 6.6.13 Syntax

��──DELete SHIPMent MAPping RULe───────────────────────────────────────�

�─ ─FROm─ ─DESTination──destination-name──HOSt DATaset──dsname──.───────��

 6.6.13.1 Syntax Rules

FROM DESTINATION destination-name

The FROM DESTINATION clause identifies the 1- to 7-character name of an
existing package shipment destination from which you are deleting a mapping
rule. You must use a fully specified value.

HOST DATASET dsname

This clause identifies the 1- to 44-character name or mask of the host data set
name.

Example of Delete Shipment Mapping Rule SCL

The following is an example of the DELETE SHIPMENT MAPPING RULE
SCL. The example deletes a shipment mapping rule from shipment
destination named "BOSTNDM".

DELETE SHIPMENT MAPPING RULE

FROM SHIPMENT DESTINATION "BOSTNDM"

HOST DATASET "ENDEVOR.QAFIN.SRCOUT" .

6-82 SCL Reference Guide

6.6 The Delete Statements

 6.6.14 Delete Subsystem

Use the DELETE SUBSYSTEM action to delete a subsystem definition. The
DELETE SUBSYSTEM action also removes approver group junction
definitions associated with the subsystem.

Note: You cannot delete a subsystem if any elements are associated with the
subsystem at either Stage 1 or Stage 2.

 6.6.15 Syntax

��──DELete SUBSystem──subsystem-name───────────────────────────────────�

�─ ─FROm─ ─ENVironment──environment-name──SYStem──system-name──.────────��

 6.6.15.1 Syntax Rules

DELETE SUBSYSTEM subsystem-name

The DELETE SUBSYSTEM clause identifies the 1- to 8-character name of
the subsystem you are deleting. You can partially or fully wildcard
subsystem name.

FROM ENVIRONMENT environment-name
 SYSTEM system-name

The FROM clause identifies the inventory location to which the subsystem is
defined. Names you use in the FROM clause must be fully specified.

Example of Delete Subsystem SCL

The following is an example of the DELETE SUBSYSTEM SCL. The
example deletes all subsystems using environment DEVEL, and system
ACCT.

DELETE SUBSYSTEM "�"

FROM ENVIRONMENT "DEVEL"

SYSTEM "ACCT" .

Chapter 6. Environment Definition SCL 6-83

6.6 The Delete Statements

 6.6.16 Delete System

Use the DELETE SYSTEM action to delete a system definition. The
DELETE SYSTEM action also deletes the type sequence definition at both
Stage 1 and Stage 2.

Note: You cannot delete a system if any subsystems or types are associated
with it at either Stage 1 or Stage 2.

 6.6.17 Syntax

��──DELete SYStem──system-name─ ─FROm─ ─ENVironment──environment-name────�

�──.──��

 6.6.17.1 Syntax Rules

DELETE SYSTEM system-name

The DELETE SYSTEM clause identifies the 1- to 8-character name of the
system you are deleting. You can partially or fully wildcard the system name.

FROM ENVIRONMENT environment-clause

The FROM ENVIRONMENT clause identifies the environment to which the
system is defined. You must use fully specified environment name.

Example of Delete System SCL

The following is an example of the DELETE SYSTEM SCL. The example
deletes a system named ACCT from environment DEVEL.

DELETE SYSTEM "ACCT"

FROM ENVIRONMENT "DEVEL" .

6-84 SCL Reference Guide

6.6 The Delete Statements

 6.6.18 Delete Type

Use the DELETE TYPE action to delete a type definition. The DELETE
TYPE action also removes any processor group and processor group symbol
records associated with the element type.

Note: You cannot delete a type definition if there are any elements
associated with it at the stage specified.

 6.6.19 Syntax

��──DELete─ ─TYPe──type-name─ ─FROm──ENVironment──environment-name───────�

�─ ─SYStem──system-name─ ──┬ ┬─STAge ID──stage-id───── ─.─────────────────��
 └ ┘ ─STAge NUMber──stage-no─

 6.6.19.1 Syntax Rules

DELETE TYPE type-name

The DELETE TYPE clause indicates that you are deleting a type definition.
You must specify this clause.

FROM ENVIRONMENT environment-name
 SYSTEM system-name

STAGE ID stage-id
STAGE NUMBER stage-no

The FROM clause identifies the inventory location to which the type is
defined. Names you use in the FROM clause must be fully specified.

Example of Delete Type SCL

The following is an example of the DELETE TYPE SCL. The example
deletes all types using environment DEVEL, system ACCT, and stage ID U.

DELETE TYPE "�"

FROM ENVIRONMENT "DEVEL"

 SYSTEM "ACCT"

STAGE ID "U" .

Chapter 6. Environment Definition SCL 6-85

6.6 The Delete Statements

6-86 SCL Reference Guide

Appendix A. SCL Reserved Words

Within Endevor's Software Control Language, there are several reserved parameters or
keywords (for example, type or system). This appendix provides a list of these words.

Appendix A. SCL Reserved Words A-1

A.1 A Rule for Working with Reserved Words

A.1 A Rule for Working with Reserved Words

Reserved words should not be used as qualifiers or identifiers within the syntax. If
you need to use such a word, however, you must enclose it in quotes. You can use
either single or double quotes.

For example, you want to add an element called "ADD." If you code the following
line, you receive an error message:

ADD ELEMENT ADD.

ADD is a reserved word and must be typed with quotes. If you type the statement
below, the system accepts the entry:

ADD ELEMENT 'ADD'.

Similarly, a clause such as the one below would be accepted by Endevor:

WHERE CCID = 'CCID'.

A-2 SCL Reference Guide

A.1 A Rule for Working with Reserved Words

A.2 The SCL Reserved Words

The list below contains the fully-spelled reserved words. Any partial spelling of a
particular word (three characters or more) is also considered reserved. For example,
"CCIDS," "CCID," and "CCI" are variations of the word CCIDS and so are reserved
within SCL.

&&ACTION DSNAMES MEMBERS SET

ACTION ELEMENTS MOVE SHOW

ACTUAL END NAME SIGNIN

ADD ENVIRONMENT NEW SIGNOUT

ALL EOF NEWNAME SITES

ARCHIVE EOJ NO SOURCE

BROWSE = NOCC STAGES

BUILD EQ NONE STOPRC

BYPASS EQUAL NOSEARCH SUBSYSTEMS

CCIDS EXPAND NOT SUMMARY

CHANGES FAILED NUMBER SYNCHRONIZE

CLEAR FILES OF SYSTEMS

COLUMNS FROM ONLY SYSOUT

COMMENT GENERATE OPTIONS TEXT

COMPONENTS GROUP OUTPUT THROUGH

COPY HISTORY OVERRIDE THRU

COPYBACK IF PRESENT TIME

CURRENT IGNORE PRINT TO

C1PRINT INCLUDES PROCESSOR TRANSFER

DATE INPUT REPLACE TYPES

DDNAME JUMP REPORT UPDATE

DEFINE LEVELS RESTORE VERSION

DELETE LIKE RETAIN WHERE

DETAIL LIST RETRIEVE WITH

DOES MASTER SEARCH

Appendix A. SCL Reserved Words A-3

A.2 The SCL Reserved Words

A-4 SCL Reference Guide

	Bookshelf
	SCL Reference Guide
	Contents
	Chapter 1. What Is SCL?
	1.1 Type Sequence Processing
	1.1.1 Overview

	1.2 Process Flow
	1.2.1 Overview
	1.2.2 Example

	1.3 Documentation Overview
	1.4 Name Masking
	1.4.1 Usage
	1.4.2 Masking Improvements

	1.5 Syntax Conventions
	1.5.1 Sample Syntax Diagram
	1.5.2 Syntax Diagram Explanation
	1.5.3 General Coding Information

	1.6 Syntax for Long File and Path Names
	1.6.1 HFSFile Syntax Rules
	1.6.2 Path Name Syntax Rules
	1.6.3 Element Name Syntax Rules

	Chapter 2. About the SCL Language
	2.1 SCL Statements
	2.1.1 Set Statements
	2.1.2 Clear Statements
	2.1.3 EOF (EOJ) Statement
	2.1.4 Element Action Statements
	2.1.5 Environment Definition Statements
	2.1.6 Package Action Statements

	2.2 Statements and Clauses
	2.2.1 Overview
	2.2.2 Coding Order

	2.3 Element Action Examples
	2.3.1 Example 1
	2.3.2 Example 2
	2.3.3 Example 3
	2.3.4 Example 4

	Chapter 3. Set, Clear, and EOF Statements
	3.1 Set Statements
	3.1.1 Conventions
	3.1.2 Set Action
	3.1.3 Syntax
	3.1.4 Set Build
	3.1.5 Syntax
	3.1.6 Set From
	3.1.7 Syntax
	3.1.8 Set Options
	3.1.9 Syntax
	3.1.10 Set STOPRC
	3.1.11 Syntax
	3.1.12 Set To
	3.1.13 Syntax
	3.1.14 Set Where
	3.1.15 Syntax

	3.2 Clear Statements
	3.2.1 Overview
	3.2.2 Clear Build
	3.2.3 Syntax
	3.2.4 Clear To/ From
	3.2.5 Syntax
	3.2.6 Clear Options
	3.2.7 Syntax
	3.2.8 Clear Where
	3.2.9 Syntax

	3.3 EOF (EOJ) Statement
	3.3.1 Overview
	3.3.2 Syntax

	Chapter 4. Element Action Statements
	4.1 Coding Conventions
	4.2 SCL Execution JCL
	4.2.1 Overview

	4.3 The && ACTION Statement
	4.3.1 Overview
	4.3.2 Syntax
	4.3.3 Example of && ACTION SCL

	4.4 The Add Statement
	4.4.1 Overview
	4.4.2 Add Syntax
	4.4.3 Example of Add SCL

	4.5 The Archive Statement
	4.5.1 Overview
	4.5.2 Syntax
	4.5.3 Example of Archive SCL

	4.6 The Copy Statement
	4.6.1 Overview
	4.6.2 Syntax
	4.6.3 Example of Copy Action SCL

	4.7 The Delete Statement
	4.7.1 Overview
	4.7.2 Syntax
	4.7.3 Example of Delete Action SCL

	4.8 The Generate Statement
	4.8.1 Overview
	4.8.2 Syntax
	4.8.3 Example of Generate SCL

	4.9 The List Statement
	4.9.1 Overview
	4.9.2 List from Endevor Statement
	4.9.3 Syntax
	4.9.4 List from Archive Data Set
	4.9.5 Syntax
	4.9.6 List Members (List from External Library)
	4.9.7 Syntax
	4.9.8 Example of List SCL

	4.10 The Move Statement
	4.10.1 Overview
	4.10.2 Syntax
	4.10.3 Example of Move SCL

	4.11 The Print Statement
	4.11.1 Overview
	4.11.2 Printing from Endevor
	4.11.3 Printing from an Output Library
	4.11.4 Print Element Statement
	4.11.5 Syntax
	4.11.6 Print Member Statement
	4.11.7 Syntax
	4.11.8 Example of Print SCL

	4.12 The Restore Statement
	4.12.1 Overview
	4.12.2 Syntax
	4.12.3 Example of Restore SCL

	4.13 The Retrieve Statement
	4.13.1 Overview
	4.13.2 Syntax
	4.13.3 Example of Retrieve SCL

	4.14 The Signin Statement
	4.14.1 Overview
	4.14.2 Syntax
	4.14.3 Example of Signin SCL

	4.15 The Transfer Statement
	4.15.1 Overview
	4.15.2 Transfer from Endevor to Endevor Statement
	4.15.3 Syntax
	4.15.4 Transfer from Endevor to Archive Data Set Statement
	4.15.5 Syntax
	4.15.6 Transfer from Archive Data Set or Unload Tape to Endevor Statement
	4.15.7 Syntax
	4.15.8 Example of Transfer SCL

	4.16 The Update Statement
	4.16.1 Overview
	4.16.2 Syntax
	4.16.3 Example of Update SCL

	Chapter 5. Batch Package SCL
	5.1 Batch Package Facility
	5.1.1 Summary of Batch Package Actions
	5.1.2 Batch Package Actions and Wildcarding

	5.2 Batch Package Facility Execution
	5.2.1 Overview
	5.2.2 Execution JCL
	5.2.3 Validating Input SCL
	5.2.4 Return Codes

	5.3 Approve Package
	5.3.1 Overview
	5.3.2 Syntax
	5.3.3 Example of Approve Package SCL

	5.4 Archive Package
	5.4.1 Overview
	5.4.2 Syntax
	5.4.3 Example of Archive Package SCL

	5.5 Backin Package
	5.5.1 Overview
	5.5.2 Syntax
	5.5.3 Example of Backin Package SCL

	5.6 Backout Package
	5.6.1 Overview
	5.6.2 Syntax
	5.6.3 Example of Backout Package SCL

	5.7 Cast Package
	5.7.1 Overview
	5.7.2 Syntax
	5.7.3 Example of Cast Package SCL

	5.8 Commit Package
	5.8.1 Overview
	5.8.2 Syntax
	5.8.3 Example of Commit Package SCL

	5.9 Define Package
	5.9.1 Overview
	5.9.2 Syntax
	5.9.3 Example of Define Package SCL

	5.10 Delete Package
	5.10.1 Overview
	5.10.2 Syntax
	5.10.3 Example of Delete Package SCL

	5.11 Deny Package
	5.11.1 Overview
	5.11.2 Syntax
	5.11.3 Example of Deny Package SCL

	5.12 Execute Package
	5.12.1 Overview
	5.12.2 Syntax
	5.12.3 Example of Execute Package SCL

	5.13 Export Package
	5.13.1 Overview
	5.13.2 Syntax
	5.13.3 Example of Export Package SCL

	5.14 Inspect Package
	5.14.1 Overview
	5.14.2 Syntax

	5.15 Reset Package
	5.15.1 Overview
	5.15.2 Syntax
	5.15.3 Example of Reset Package SCL

	5.16 Submit Package
	5.16.1 Overview
	5.16.2 Syntax
	5.16.3 Example of Submit Package SCL

	Chapter 6. Environment Definition SCL
	6.1 Batch Environment Administration Facility
	6.2 Batch Environment Administration Facility Execution
	6.2.1 Overview
	6.2.2 Execution JCL
	6.2.3 DD Statement Descriptions
	6.2.4 Validating Input SCL
	6.2.5 Return Codes
	6.2.6 Execution Reports

	6.3 Edit Commands
	6.3.1 Overview
	6.3.2 Invoking Edit Commands
	6.3.3 Edit Command Rules

	6.4 The Build Statements
	6.4.1 Overview
	6.4.2 Build SCL for Approver Group
	6.4.3 Syntax
	6.4.4 Build SCL for Approver Relation
	6.4.5 Syntax
	6.4.6 Build SCL for Environment
	6.4.7 Syntax
	6.4.8 Build SCL for Processor Group
	6.4.9 Syntax
	6.4.10 Build SCL for Processor Symbol
	6.4.11 Syntax
	6.4.12 Build SCL for Shipment Destination
	6.4.13 Syntax
	6.4.14 Build SCL for Subsystem
	6.4.15 Syntax
	6.4.16 Build SCL for System
	6.4.17 Syntax
	6.4.18 Build SCL for Type
	6.4.19 Syntax
	6.4.20 Build SCL for Type Sequence
	6.4.21 Syntax

	6.5 The Define Statements
	6.5.1 Overview
	6.5.2 Define Approver Group
	6.5.3 Syntax
	6.5.4 Define Approver Relation
	6.5.5 Syntax
	6.5.6 Define Processor Group
	6.5.7 Syntax
	6.5.8 Define Processor Symbol
	6.5.9 Syntax
	6.5.10 Define Shipment Destination
	6.5.11 Syntax
	6.5.12 Define Shipment Mapping Rule
	6.5.13 Syntax
	6.5.14 Define Subsystem
	6.5.15 Syntax
	6.5.16 Define System
	6.5.17 Syntax
	6.5.18 Define Type
	6.5.19 Syntax 6.5.20 Define Type Syntax
	6.5.21 Define Type Sequence
	6.5.22 Syntax

	6.6 The Delete Statements
	6.6.1 Overview
	6.6.2 Delete Approver Group
	6.6.3 Syntax
	6.6.4 Delete Approver Relation
	6.6.5 Syntax
	6.6.6 Delete Processor Group
	6.6.7 Syntax
	6.6.8 Delete Processor Symbol
	6.6.9 Syntax
	6.6.10 Delete Shipment Destination
	6.6.11 Syntax
	6.6.12 Delete Shipment Mapping Rule
	6.6.13 Syntax
	6.6.14 Delete Subsystem
	6.6.15 Syntax
	6.6.16 Delete System
	6.6.17 Syntax
	6.6.18 Delete Type
	6.6.19 Syntax

	Appendix A. SCL Reserved Words
	A. 1 A Rule for Working with Reserved Words
	A. 2 The SCL Reserved Words

